Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
The theory of Schur–Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur–Weyl theory. To begin, various algebraic structures are discussed, including double Ringel–Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur–Weyl duality on three levels. This includes the affine quantum Schur–Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel–Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel–Hall algebras and Schur–Weyl duality.
This invaluable look provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990''s, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections representing new developments in the chapters of the first edition have been added. The new chapters cover quantum dot semiconductor optical amplifiers (QD-SOA), reflective semiconductor optical amplifiers (RSOA) for passive optical network applications, two-photon absorption in amplifiers, and, applications of SOA as broadband sources. They represent advances in research, technology and commercial trends in the area of semiconductor optical amplifiers.Semiconductor Optical Amplifier is self-contained and unified in presentation. It can be used as an advanced text by graduate students and by practicing engineers. It is also suitable for non-experts who wish to have an overview of optical amplifiers. The treatments in the book are detailed enough to capture the interest of the curious reader and complete enough to provide the necessary background to explore the subject further.
Solid-State NMR Characterization of Heterogeneous Catalysts and Catalytic Reactions provides a comprehensive account of state-of-the-art solid-state NMR techniques and the application of these techniques in heterogeneous catalysts and related catalytic reactions. It includes an introduction to the basic theory of solid-state NMR and various frequently used techniques. Special emphasis is placed on characterizing the framework and pore structure, active site, guest-host interaction, and synthesis mechanisms of heterogeneous catalysts using multinuclear one- and two-dimensional solid-sate NMR spectroscopy. Additionally, various in-situ solid-state NMR techniques and their applications in investigation of the mechanism of industrially important catalytic reactions are also discussed. Both the fundamentals and the latest research results are covered, making the book suitable as a reference guide for both experienced researchers in and newcomers to this field. Feng Deng is a Professor at Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.
This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.
This book systematically covers the sensory, physical, chemical nutrition, and processing characteristics of different peanut varieties, while also providing an in-depth review of research advances in peanut processing quality. The book goes on to examine the relationship between raw materials and the qualities of peanut protein, peanut oil and other main peanut processing products. As such, it provides a valuable reference guide for research into the raw materials, change mechanisms and control technologies used in peanut processing, laying the groundwork for the development of new disciplines in “grain and oil processing quality”. It will be useful for graduate students, researchers, and management groups from multidisciplinary audiences, covering both food science & technology and public health.
Traditional well logging methods, such as resistivity, acoustic, nuclear and NMR, provide indirect information related to fluid and formation properties. The “formation tester,” offered in wireline and MWD/LWD operations, is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, however, are shrouded in secrecy. Unfortunately, many are poorly constructed, and because details are not available, industry researchers are not able to improve upon them. This new book explains conventional models and develops new powerful algorithms for “double-drawdown” and “advanced phase delay” early-time analysis - importantly, it is now possible to predict both horizontal and vertical permeabilities, plus pore pressure, within seconds of well logging in very low mobility reservoirs. Other subjects including inertial Forchheimer effects in contamination modeling and time-dependent flowline volumes are also developed. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but convenient, easy-to-use software is available for those needing immediate answers. The leading author is a well known petrophysicist, with hands-on experience at Schlumberger, Halliburton, BP Exploration and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the United States Department of Energy. His new collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side to define a new generation of formation testing logging instruments. The present book provides more than formulations and solutions: it offers a close look at formation tester development “behind the scenes,” as the China National Offshore Oil Corporation opens up its research, engineering and manufacturing facilities through a collection of interesting photographs to show how formation testing tools are developed from start to finish.
The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.
This book introduces novel solutions to the rendezvous problem in distributed systems, a fundamental problem that underpins the construction of many important functions in distributed systems and networks. The book covers rendezvous theories, distributed rendezvous algorithms, and rendezvous applications in practical systems, presents state-of-the-art rendezvous results and highlights the latest methods of rendezvous in distributed systems. It provides in particular an in-depth treatment of the blind rendezvous and oblivious blind rendezvous problems and their solutions. Further, it sheds new light on rendezvous applications in cognitive radio networks and rendezvous search in graphs. As such, it will also be of interest to readers from other research fields such as robotics, wireless sensor networks, and game theory.
Asymmetric synthesis remains a challenge to practicing scientists as the need for enantiomerically pure or enriched compounds continues to increase. Over the last decade, a large amount of literature has been published in this field. Principles and Applications of Asymmetric Synthesis consolidates and evaluates the most useful methodologies into a one-volume resource for the convenience of practicing scientists and students. Authored by internationally renowned scientists in the field, this reliable reference covers more than 450 reactions and includes important stoichiometric as well as catalytic asymmetric reactions. The first chapter reviews the basic principles, common nomenclature, and analytical methods, and the remainder of the book is organized according to reaction type. The text examines such topics as: Carbon-carbon bond formations involving carbonyls, enamines, imines, and enolates Asymmetric C-O bond formations including epoxidation, dihydroxylation, and aminohydroxylation Asymmetric synthesis using the Diels-Alder reaction and other cyclizations Applications to the total synthesis of natural products Use of enzymes in asymmetric synthesis Practicing chemists in the pharmaceutical, fine chemical, and agricultural professions as well as graduate students will find that Principles and Applications of Asymmetric Synthesis affords comprehensive and current coverage.
This volume is a collection of original research papers and expository articles stemming from the scientific program of the Nonlinear PDE Emphasis Year held at Northwestern University (Evanston, IL) in March 1998. The book offers a cross-section of the most significant recent advances and current trends and directions in nonlinear partial differential equations and related topics. The book's contributions offer two perspectives. There are papers on general analytical treatment of the theory and papers on computational methods and applications originating from significant realistic mathematical models of natural phenomena. Also included are articles that bridge the gap between these two perspectives, seeking synergistic links between theory and modeling and computation. The volume offers direct insight into recent trends in PDEs. This volume is also available on the Web. Those who purchase the print edition can gain free access by going to www.ams.org/conm/.
Probabilistic Graphical Models for Computer Vision introduces probabilistic graphical models (PGMs) for computer vision problems and teaches how to develop the PGM model from training data. This book discusses PGMs and their significance in the context of solving computer vision problems, giving the basic concepts, definitions and properties. It also provides a comprehensive introduction to well-established theories for different types of PGMs, including both directed and undirected PGMs, such as Bayesian Networks, Markov Networks and their variants. - Discusses PGM theories and techniques with computer vision examples - Focuses on well-established PGM theories that are accompanied by corresponding pseudocode for computer vision - Includes an extensive list of references, online resources and a list of publicly available and commercial software - Covers computer vision tasks, including feature extraction and image segmentation, object and facial recognition, human activity recognition, object tracking and 3D reconstruction
This book is a collection of lecture notes on Nonlinear Conservation Laws, Fluid Systems and Related Topics delivered at the 2007 Shanghai Mathematics Summer School held at Fudan University, China, by world''s leading experts in the field. The volume comprises five chapters that cover a range of topics from mathematical theory and numerical approximation of both incompressible and compressible fluid flows, kinetic theory and conservation laws, to statistical theories for fluid systems. Researchers and graduate students who want to work in this field will benefit from this essential reference as each chapter leads readers from the basics to the frontiers of the current research in these areas.
This book investigates in detail the two-dimensional packing and cutting problems in the field of operations research and management science. It introduces the mathematical models and intelligent solving algorithms for these problems, as well as their engineering applications. Most intelligent methods reported in this book have already been applied in reality, which can provide reference for the engineers. The presented novel methods for the two-dimensional packing problem provide a new way to solve the problem for researchers interested in operations research or computer science. This book also introduces three new variants of packing problems and their solving methods, which offer a different research direction. The book is intended for undergraduate and graduate students who are interested in the solving methods for packing and cutting problems, researchers investigating the application of intelligent algorithms, scientists studying the theory of the operations research and CAM software developers working on integration of packing and cutting problem.
Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering. - Explains the latest research outputs on modeling, identification and adaptive control for systems with nonsmooth dynamics - Provides practical application and experimental results for robotic systems, and servo motors
This volume is a collection of research papers on nonlinear partial differential equations and related areas, representing many aspects of the most recent developments in these important areas. In particular, the following are included: nonlinear conservation laws, semilinear elliptic equations, nonlinear hyperbolic equations, nonlinear parabolic equations, singular limit problems, and analysis of exact and numerical solutions. Important areas such as numerical analysis, relaxation theory, multiphase theory, kinetic theory, combustion theory, dynamical systems, and quantum field theory are also covered.
This book targets to earth scientists and engineers, in particular students, researchers, managers, and practitioners, who are interested in mining engineering, environmental engineering, green coal mining, sustainable water resource management, and effective measures to balance mine safety and ecological conservation. In the disciplines of mine hydrogeology and mining engineering, there have always been difficulties in the theoretical interpretation of the changes in the physical and hydraulic characteristics of water resisting strata during coal seam mining. In the past 10 years, the authors studied the relevant contents by using the methods of physical simulation, numerical simulation, field test and mining practice of similar materials, so as to understand the internal relationship between the stratigraphic sedimentary characteristics of the mining area and the occurrence mechanism of mine water disaster. On the premise of analyzing and studying the stratigraphic sedimentary environment in the mining area in detail, it is of great significance for the realization of "coal water" dual resource mining in the mining area to divide the types of roof water disaster in the mining area and study the formation mechanism of mine water disaster caused by different rock formation combinations and mining methods.
Nitride Phosphors and Solid-State Lighting provides an in-depth introduction to the crystal chemistry, synthesis, luminescence, and applications of phosphor materials for solid-state lighting, mainly focusing on new nitride phosphors. Drawing on their extensive experimental work, the authors offer a multidisciplinary study of phosphor materials tha
This atlas is designed to be a user-friendly bench-side reference for pathology trainees and general pathologists in handling and interpreting specimens of hepatocellular carcinoma. It provides over 550 high-quality gross and microscopic photos focusing on hepatocellular carcinoma and its mimickers, and demonstrating a full range of various histological variants of hepatocellular carcinoma. Introductory text in each chapter summarises salient clinical associations, pathological features, and molecular alterations of different variants of hepatocellular carcinoma. Differentiation between hepatocellular carcinoma and its mimickers is illustrated through various case studies. The authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high.The authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high.The authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high.The authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high.The authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high./divThe authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high./divThe authors are nationally and internationally recognized hepatopathologists in the Asian-Pacific regions (Hong Kong, Korea, the Philippines, and Singapore), in which the incidence of hepatocellular carcinoma is high./div
Marine pipelines for the transportation of oil and gas have become a safe and reliable part of the expanding infrastructure put in place for the development of the valuable resources below the worlds seas and oceans. The design of these pipelines is a relatively new technology and continues to evolve as the design of more cost effective pipelines becomes a priority and applications move into deeper waters and more hostile environments. This updated edition of a best selling title provides the reader with a scope and depth of detail related to the design of offshore pipelines and risers not seen before in a textbook format. With over 25years experience, Professor Yong Bai has been able to assimilate the essence of the applied mechanics aspects of offshore pipeline system design in a form of value to students and designers alike. It represents an excellent source of up to date practices and knowledge to help equip those who wish to be part of the exciting future of this industry.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.