The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions.· Extensive research references.· Comprehensive review of a very rapidly growing number of theories.· Summary of all important experiments.· Comparison with other highly correlated systems such as High-Tc Superconductors.· Possible Technological applications.
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models of solids and properties and progresses to more advanced properties and topics later in the book. It offers a comprehensive account of the modern topics in condensed matter physics by including introductory accounts of the areas of research in which intense research is underway. The book assumes a working knowledge of quantum mechanics, statistical mechanics, electricity and magnetism and Green's function formalism (for the second-semester curriculum). - Covers many advanced topics and recent developments in condensed matter physics which are not included in other texts and are hot areas: Spintronics, Heavy fermions, Metallic nanoclusters, Zno, Graphene and graphene-based electronic, Quantum hall effect, High temperature superdonductivity, Nanotechnology - Offers a diverse number of Experimental techniques clearly simplified - Features end of chapter problems
This introductory yet comprehensive book presents the fundamental concepts on the analysis and design of tribological systems. It is a unique blend of scientific principles, mathematical formulations and engineering practice. The text discusses properties and measurements of engineering surfaces, surface contact geometry and contact stresses. Besides, it deals with adhesion, friction, wear, lubrication and related interfacial pheno-mena. It also highlights recent developments like nanotribology and fractal analysis with great clarity. The book is intended as a text for senior under-graduate and postgraduate students of mechanical engineering, production/industrial engineering, metallurgy and material science. It can also serve as a reference for practising engineers and designers.
The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: Basic Properties of Silicon Quantum Wells, Wires, Dots and Superlattices Absorption Processes in Semiconductors Light Emitters in Silicon Photodetectors , Photodiodes and Phototransistors Raman Lasers including Raman Scattering Guided Lightwaves Planar Waveguide Devices Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines the basic principles of operation of devices, the structures of the devices, and offers an insight into state-of-the-art and future developments.
Developed from the authors' classroom-tested material, Semiconductor Laser Theory takes a semiclassical approach to teaching the principles, structure, and applications of semiconductor lasers. Designed for graduate students in physics, electrical engineering, and materials science, the text covers many recent developments, including diode lasers u
This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential.In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field.
The Sociology of Greed examines crises in financial institutions such as banks from the vantage point of the greed of the people at their helm. It offers an intensive analysis of the banking crises under the conditions of colonial capitalism in early twentieth-century Bengal that led to institutional and social collapse. Breaking new ground, the book looks at the moral economy of capitalism and money culture by focusing on the victims of banking crises, hitherto unexplored in Western empirical research. Through sociological analyses of political economy, it seamlessly combines archival records, survey and statistical data with literary narratives, realist fiction and performing arts to recount how the greed of bank owners and managers ruined their institutions as well as common people. It argues that greed turns perilous when the state and the market facilitate its agency, and it examines the contexts and histories, the indifference of the fledgling colonial state, feeble political response, and the consequences for those who were impacted and the losses, especially the refugees, the lower-middle class and women. The volume also re-composes relevant elements of Western sociological scholarship from classical theories to early twenty-first-century financial sociology. An insightful account of the social history of banking in India, this book will greatly interest researchers and scholars in sociology, economics, history and cultural studies.
Algae is the basic component in the living world since pre-historic times. It has great impact on biological science, environment and directly on the human society. Algae is not only the branch of Botany, it’s a combination of both Botany and other branches of biology. The book provides a comprehensive and up-to-date information of applied phycology, classification, life histories of selected genera under Cyanophyta, Prochlorophyta, Glaucophyta, Chlorophyta, Rhodophyta, Heterokontophyta, Euglenophyta, Dinophyta, Cryptophyta, Prymnesiophyta, Chlorarachniophyta and Phylogeny along with the modern development of algal research. This is a textbook for the undergraduate and postgraduate student of Botany and Biology.
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models of solids and properties and progresses to more advanced properties and topics later in the book. It offers a comprehensive account of the modern topics in condensed matter physics by including introductory accounts of the areas of research in which intense research is underway. The book assumes a working knowledge of quantum mechanics, statistical mechanics, electricity and magnetism and Green's function formalism (for the second-semester curriculum). - Covers many advanced topics and recent developments in condensed matter physics which are not included in other texts and are hot areas: Spintronics, Heavy fermions, Metallic nanoclusters, Zno, Graphene and graphene-based electronic, Quantum hall effect, High temperature superdonductivity, Nanotechnology - Offers a diverse number of Experimental techniques clearly simplified - Features end of chapter problems
The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions.· Extensive research references.· Comprehensive review of a very rapidly growing number of theories.· Summary of all important experiments.· Comparison with other highly correlated systems such as High-Tc Superconductors.· Possible Technological applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.