Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algorithms, but to work actively with robust and nonparametric procedures, practitioners need to understand their background. Explaining the underpinnings of robust methods and recent theoretical developments, Methodology in Robust and Nonparametric Statistics provides a profound mathematically rigorous explanation of the methodology of robust and nonparametric statistical procedures. Thoroughly up-to-date, this book Presents multivariate robust and nonparametric estimation with special emphasis on affine-equivariant procedures, followed by hypotheses testing and confidence sets Keeps mathematical abstractions at bay while remaining largely theoretical Provides a pool of basic mathematical tools used throughout the book in derivations of main results The methodology presented, with due emphasis on asymptotics and interrelations, will pave the way for further developments on robust statistical procedures in more complex models. Using examples to illustrate the methods, the text highlights applications in the fields of biomedical science, bioinformatics, finance, and engineering. In addition, the authors provide exercises in the text.
A study of sequential nonparametric methods emphasizing the unified Martingale approach to the theory, with a detailed explanation of major applications including problems arising in clinical trials, life-testing experimentation, survival analysis, classical sequential analysis and other areas of applied statistics and biostatistics.
The only comprehensive guide to the theory and practice of one oftoday's most important probabilistic techniques The past 15 years have witnessed many significant advances insequential estimation, especially in the areas of three-stage andnonparametric methodology. Yet, until now, there were no referencesdevoted exclusively to this rapidly growing statisticalfield. Sequential Estimation is the first, single-source guide to thetheory and practice of both classical and modern sequentialestimation techniques--including parametric and nonparametricmethods. Researchers in sequential analysis will appreciate theunified, logically integrated treatment of the subject, as well ascoverage of important contemporary procedures not covered in moregeneral sequential analysis texts, such as: * Shrinkage estimation * Empirical and hierarchical Bayes procedures * Multistage sampling and accelerated sampling procedures * Time-sequential estimation * Sequential estimation in finite population sampling * Reliability estimation and capture-recapture methodologiesleading to sequential tagging schemes An indispensable resource for researchers in sequential analysis,Sequential Estimation is an ideal graduate-level text as well.
An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory
A broad and unified methodology for robust statistics—with exciting new applications Robust statistics is one of the fastest growing fields in contemporary statistics. It is also one of the more diverse and sometimes confounding areas, given the many different assessments and interpretations of robustness by theoretical and applied statisticians. This innovative book unifies the many varied, yet related, concepts of robust statistics under a sound theoretical modulation. It seamlessly integrates asymptotics and interrelations, and provides statisticians with an effective system for dealing with the interrelations between the various classes of procedures. Drawing on the expertise of researchers from around the world, and covering over a decade's worth of developments in the field, Robust Statistical Procedures: Asymptotics and Interrelations: Discusses both theory and applications in its two parts, from the fundamentals to robust statistical inference Thoroughly explores the interrelations between diverse classes of procedures, unlike any other book Compares nonparametric procedures with robust statistics, explaining in detail asymptotic representations for various estimators Provides a timesaving list of mathematical tools for the problems under discussion Keeps mathematical abstractions to a minimum, in spite of its largely theoretical content Includes useful problems and exercises at the end of each chapter Offers strategies for more complex models when using robust statistical procedures Self-contained and rounded in approach, this book is invaluable for both applied statisticians and theoretical researchers; for graduate students in mathematical statistics; and for anyone interested in the influence of this methodology.
A study of sequential nonparametric methods emphasizing the unified Martingale approach to the theory, with a detailed explanation of major applications including problems arising in clinical trials, life-testing experimentation, survival analysis, classical sequential analysis and other areas of applied statistics and biostatistics.
This text bridges the gap between sound theoretcial developments and practical, fruitful methodology by providing solid justification for standard symptotic statistical methods. It contains a unified survey of standard large sample theory and provides access to more complex statistical models that arise in diverse practical applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.