The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.
The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.
This book provides an introductory treatment of the fundamentals of decision-making in a distributed framework. Classical detection theory assumes that complete observations are available at a central processor for decision-making. More recently, many applications have been identified in which observations are processed in a distributed manner and decisions are made at the distributed processors, or processed data (compressed observations) are conveyed to a fusion center that makes the global decision. Conventional detection theory has been extended so that it can deal with such distributed detection problems. A unified treatment of recent advances in this new branch of statistical decision theory is presented. Distributed detection under different formulations and for a variety of detection network topologies is discussed. This material is not available in any other book and has appeared relatively recently in technical journals. The level of presentation is such that the hook can be used as a graduate-level textbook. Numerous examples are presented throughout the book. It is assumed that the reader has been exposed to detection theory. The book will also serve as a useful reference for practicing engineers and researchers. I have actively pursued research on distributed detection and data fusion over the last decade, which ultimately interested me in writing this book. Many individuals have played a key role in the completion of this book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.