A rapid development in diverse areas of molecular biology and genetic engineering resulted in emergence of variety of tools. These tools are not only applicable to basic researches being carried out world over, but also exploited for precise detection of abnormal conditions in plants, animals and human body. Although a basic researcher is well versed with few techniques used by him/her in the laboratory, they may not be well acquainted with methodologies, which can be used to work out some of their own research problems. The picture is more blurred when the molecular diagnostic tools are to be used by physicians, scientists and technicians working in diagnostic laboratories in hospitals, industry and academic institutions. Since many of them are not trained in basics of these methods, they come across several gray areas in understanding of these tools. The accurate application of molecular diagnostic tools demands in depth understanding of the methodology for precise detection of the abnormal condition of living body. To meet the requirements of a good book on molecular diagnostics of students, physicians, scientists working in agricultural, veterinary, medical and pharmaceutical sciences, it needs to expose the reader lucidly to: Give basic science behind commonly used tools in diagnostics Expose the readers to detailed applications of these tools and Make them aware the availability of such diagnostic tools The book will attract additional audience of pathologists, medical microbiologists, pharmaceutical sciences, agricultural scientists and veterinary doctors if the following topics are incorporated at appropriate places in Unit II or separately as a part of Unit-III in the book. Molecular diagnosis of diseases in agricultural crops Molecular diagnosis of veterinary diseases. Molecular epidemiology, which helps to differentiate various epidemic strains and sources of disease outbreaks. Even in different units of the same hospital, the infections could be by different strains of the same species and the information becomes valuable for infection control strategies. Drug resistance is a growing problem for bacterial, fungal and parasitic microbes and the molecular biology tools can help to detect the drug resistance genes without the cultivation and in vitro sensitivity testing. Molecular diagnostics offers faster help in the selection of the proper antibiotic for the treatment of tuberculosis, which is a major problem of the in the developing world. The conventional culture and drug sensitivity testing of tuberculosis bacilli is laborious and time consuming, whereas molecular diagnosis offers rapid drug resistant gene detection even from direct clinical samples. The same approach for HIV, malaria and many more diseases needs to be considered. Molecular diagnostics in the detection of diseases during foetal life is an upcoming area in the foetal medicine in case of genetic abnormalities and infectious like TORCH complex etc. The book will be equally useful to students, scientists and professionals working in the field of molecular diagnostics.
An accessible introduction to the world of microbes—from basic microbe biology through industrial applications Microbes affect our lives in a variety of ways—playing an important role in our health, food, agriculture, and environment. While some microbes are beneficial, others are pathogenic or opportunistic. Microbes: Concepts and Applications describes basic microbe biology and identification and shows not only how they operate in the subfields of medicine, biotechnology, environmental science, bioengineering, agriculture, and food science, but how they can be harnessed as a resource. It provides readers with a solid grasp of etiologic agents, pathogenic processes, epidemiology, and the role of microbes as therapeutic agents. Placing a major emphasis on omics technology, the book covers recent developments in the arena of microbes and discusses their role in industry and agriculture, as well as in related fields such as immunology, cell biology, and molecular biology. It offers complete discussions of the major bacterial, viral, fungal, and parasitic pathogens; includes information on emerging infectious diseases, antibiotic resistance, and bioterrorism; and talks about the future challenges in microbiology. The most complete treatment of microbial biology available, Microbes features eye-opening chapters on: Human and Microbial World Gene Technology: Application and Techniques Molecular Diagnostic and Medical Microbiology Identification and Classification of Microbes Diversity of Microorganisms Microbes in Agriculture Microbes as a Tool for Industry and Research Complete with charts and figures, this book is an invaluable textbook for university teachers, students, researchers, and people everywhere who care about microorganisms.
Despite a decline in developed countries, cancer has consistently maintained its status as one of the top killers since time immemorial. Exploring cancer management and treatment at the molecular level, Biology of Oral Cancer: Key Apoptotic Regulators presents a key molecular event-apoptosis-in relation to genesis and progression of oral cancer. Th
A global perspective on the management and prevention of emerging and re-emerging diseases Emerging infectious diseases are newly identified or otherwise previously unknown infections that cause public health challenges. Re-emerging infectious diseases are due to both the reappearance of and an increase in the number of infections from a disease that is known, but which had formerly caused so few infections that it was no longer considered a public health problem. The factors that cause the emergence or re-emergence of a disease are diverse. This book takes a look at the world's emerging and re-emerging diseases. It covers the diagnosis, therapy, prevention, and control of a variety of individual diseases, and examines the social and behavioral issues that could contribute to epidemics. Each chapter focuses on an individual disease and provides scientific background and social history as well as the current basics of infection, epidemiology, and control. Emerging Epidemics: Management and Control offers five topics of coverage: FUNDAMENTALS Epidemics fundamentals Disasters and epidemics Biosafety RE-EMERGING EPIDEMICS Tuberculosis Plague NEWLY EMERGING EPIDEMICS Leptospirosis Dengue Japanese Encephalitis Chikungunya Fever West Nile Virus Chandipura Virus Encephalitis Kyasanur Forest Disease Hantavirus Human, Avian, and Swine Influenza Severe Acute Respiratory Syndrome Nipah Virus Paragonimiasis Melioidosis POTENTIAL EPIDEMICS Biowarfare and bioterrorism Food contamination and food terrorism Antimicrobial resistance VECTOR CONTROL METHODS Mosquito control Other disease vectors and their control Offering an integrated, worldwide overview of the complexity of the epidemiology of infections, Emerging Epidemics will be a valuable resource for students, physicians, and scientists working in veterinary, medical, and the pharmaceutical sciences.
Instrumentation is central to the study of physiology and genetics in living organisms, especially at the molecular level. Numerous techniques have been developed to address this in various biological disciplines, creating a need to understand the physical principles involved in the operation of research instruments and the parameters required in using them. Introduction to Instrumentation in Life Sciences fills this need by addressing different aspects of tools that hold the keys to cutting-edge research and innovative applications, from basic techniques to advanced instrumentation. The text describes all topics so even beginners can easily understand the theoretical and practical aspects. Comprehensive chapters encompass well-defined methodology that describes the instruments and their corresponding applications in different scientific fields. The book covers optical and electron microscopy; micrometry, especially in microbial taxonomy; pH meters and oxygen electrodes; chromatography for separation and purification of products from complex mixtures; spectroscopic and spectrophotometric techniques to determine structure and function of biomolecules; preparative and analytical centrifugation; electrophoretic techniques; x-ray microanalysis including crystallography; applications of radioactivity, including autoradiography and radioimmunoassays; and fermentation technology and subsequent separation of products of interest. The book is designed to serve a wide range of students and researchers in diversified fields of life sciences: pharmacy, biotechnology, microbiology, biochemistry, and environmental sciences. It introduces different aspects of basic experimental methods and instrumentation. The book is unique in its broad subject coverage, incorporating fundamental techniques as well as applications of modern molecular and proteomic tools that are the basis for state-of-the-art research. The text emphasizes techniques encountered both in practical classes and in high-throughput environments used in modern industry. As a further aid to students, the authors provide well-illustrated diagrams to explain the principles and theories behind the instruments described.
As applied life science progresses, becoming fully integrated into the biological, chemical, and engineering sciences, there is a growing need for expanding life sciences research techniques. Anticipating the demands of various life science disciplines, Laboratory Protocols in Applied Life Sciences explores this development. This book covers a wide spectrum of areas in the interdisciplinary fields of life sciences, pharmacy, medical and paramedical sciences, and biotechnology. It examines the principles, concepts, and every aspect of applicable techniques in these areas. Covering elementary concepts to advanced research techniques, the text analyzes data through experimentation and explains the theory behind each exercise. It presents each experiment with an introduction to the topic, concise objectives, and a list of necessary materials and reagents, and introduces step-by-step, readily feasible laboratory protocols. Focusing on the chemical characteristics of enzymes, metabolic processes, product and raw materials, and on the basic mechanisms and analytical techniques involved in life science technological transformations, this text provides information on the biological characteristics of living cells of different origin and the development of new life forms by genetic engineering techniques. It also examines product development using biological systems, including pharmaceutical, food, and beverage industries. Laboratory Protocols in Applied Life Sciences presents a nonmathematical account of the underlying principles of a variety of experimental techniques in disciplines, including: Biotechnology Analytical biochemistry Clinical biochemistry Biophysics Molecular biology Genetic engineering Bioprocess technology Industrial processes Animal Plant Microbial biology Computational biology Biosensors Each chapter is self-contained and written in a style that helps students progress from basic to advanced techniques, and eventually design and execute their own experiments in a given field of biology.
As applied life science progresses, becoming fully integrated into the biological, chemical, and engineering sciences, there is a growing need for expanding life sciences research techniques. Anticipating the demands of various life science disciplines, Laboratory Protocols in Applied Life Sciences explores this development. This book covers a wide spectrum of areas in the interdisciplinary fields of life sciences, pharmacy, medical and paramedical sciences, and biotechnology. It examines the principles, concepts, and every aspect of applicable techniques in these areas. Covering elementary concepts to advanced research techniques, the text analyzes data through experimentation and explains the theory behind each exercise. It presents each experiment with an introduction to the topic, concise objectives, and a list of necessary materials and reagents, and introduces step-by-step, readily feasible laboratory protocols. Focusing on the chemical characteristics of enzymes, metabolic processes, product and raw materials, and on the basic mechanisms and analytical techniques involved in life science technological transformations, this text provides information on the biological characteristics of living cells of different origin and the development of new life forms by genetic engineering techniques. It also examines product development using biological systems, including pharmaceutical, food, and beverage industries. Laboratory Protocols in Applied Life Sciences presents a nonmathematical account of the underlying principles of a variety of experimental techniques in disciplines, including: Biotechnology Analytical biochemistry Clinical biochemistry Biophysics Molecular biology Genetic engineering Bioprocess technology Industrial processes Animal Plant Microbial biology Computational biology Biosensors Each chapter is self-contained and written in a style that helps students progress from basic to advanced techniques, and eventually design and execute their own experiments in a given field of biology.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.