Viscoelasticity is a complicated theorem that is generally used in several aspects of material characterization and modeling of polymers, resins, fiber-reinforced composites, bituminous composites, etc. On the other hand, the heterogeneous nature of composites like asphalt concrete and fiber-reinforced polymers has motivated lots of researchers to investigate the mechanical and rheological properties of these materials. This book mainly consists of the theory and application of viscoelastic materials used for construction. It starts with a comprehensible presentation of the theory of linear and nonlinear viscoelasticity. Wherein, the application of viscoelastic equations and principles on constructional viscoelastic composite materials considering time, temperature, loading rate dependency, and heterogeneity of composite substances is highlighted. The principles and equations of the viscoelasticity theorem are presented in several books, but here it is tried to present them more understandable and straightforwardly. This helps in solving real problems of heterogeneous composite materials, especially those which are used in construction. Moreover, the fundamental experiments for characterizing the elastic and viscoelastic properties of fibrous and bituminous composites are introduced and summarized. Then after, some analytical and empirical formulations for deriving the material properties of composites from the properties of the basic constituents are presented. These are followed by numerical simulation techniques using the finite element method to simulate composite materials.
Applications of Viscoelasticity: Bituminous Materials Characterization and Modeling starts with an introduction to the theory of viscoelasticity, emphasizing its importance to various applications in material characterization and modeling. It next looks at constitutive viscoelastic functions, outlines basic equations for different loading conditions, and introduces the Boltzmann superposition principle, relaxation modulus, and creep compliance. Mechanical models, including integer-order and fractional-order are studied next, featuring real experimentation data alongside the benefits and drawbacks of using each model in various real-world scenarios. The book then covers the correspondence principle, followed by time–temperature superposition, featuring a simple procedure to construct a real master curve and challenges that might be encountered. The concluding chapters cover the Hopkins and Hamming, Park and Kim, and General Power law methods for interconversion of constitutive viscoelastic functions, applications of viscoelasticity for experimental tests, and incremental form of viscoelastic relations for numerical modeling. The book also includes supplementary codes that users can duplicate and use in their own work. - Takes an applied approach to material viscoelasticity, explaining complicated viscoelastic equations and principles - Presents examples of those equations and principles being applied to common problems in realworld settings - Covers constitutive viscoelastic functions, including relaxation modulus and creep compliance - Outlines the construction of a master curve of viscoelastic material considering time–temperature superposition - Couples the correspondence principle with common viscoelastic experiments, such as threepoint bending beam, axial and torsional bar, and dynamic shear rheometer - Provides supplementary codes
Applications of Viscoelasticity: Bituminous Materials Characterization and Modeling starts with an introduction to the theory of viscoelasticity, emphasizing its importance to various applications in material characterization and modeling. It next looks at constitutive viscoelastic functions, outlines basic equations for different loading conditions, and introduces the Boltzmann superposition principle, relaxation modulus, and creep compliance. Mechanical models, including integer-order and fractional-order are studied next, featuring real experimentation data alongside the benefits and drawbacks of using each model in various real-world scenarios. The book then covers the correspondence principle, followed by time–temperature superposition, featuring a simple procedure to construct a real master curve and challenges that might be encountered. The concluding chapters cover the Hopkins and Hamming, Park and Kim, and General Power law methods for interconversion of constitutive viscoelastic functions, applications of viscoelasticity for experimental tests, and incremental form of viscoelastic relations for numerical modeling. The book also includes supplementary codes that users can duplicate and use in their own work. - Takes an applied approach to material viscoelasticity, explaining complicated viscoelastic equations and principles - Presents examples of those equations and principles being applied to common problems in realworld settings - Covers constitutive viscoelastic functions, including relaxation modulus and creep compliance - Outlines the construction of a master curve of viscoelastic material considering time–temperature superposition - Couples the correspondence principle with common viscoelastic experiments, such as threepoint bending beam, axial and torsional bar, and dynamic shear rheometer - Provides supplementary codes
Bio-Based and Bio-Inspired Pavement Construction Materials explores various production techniques, experimental characterization methods, applications, and numerical modeling and simulation approaches for bio-based and bio-inspired pavement materials. The book demonstrates how bio-based and bio-inspired materials can be used in pavements to solve problems related to sustainability while simultaneously enhancing the mechanical properties of asphalt and cementitious materials. Supply chain management, life cost cycle analysis, and environmental assessment of using these materials are all covered as well. Examples of these materials being used in real-life settings are included throughout.
Viscoelasticity is a complicated theorem that is generally used in several aspects of material characterization and modeling of polymers, resins, fiber-reinforced composites, bituminous composites, etc. On the other hand, the heterogeneous nature of composites like asphalt concrete and fiber-reinforced polymers has motivated lots of researchers to investigate the mechanical and rheological properties of these materials. This book mainly consists of the theory and application of viscoelastic materials used for construction. It starts with a comprehensible presentation of the theory of linear and nonlinear viscoelasticity. Wherein, the application of viscoelastic equations and principles on constructional viscoelastic composite materials considering time, temperature, loading rate dependency, and heterogeneity of composite substances is highlighted. The principles and equations of the viscoelasticity theorem are presented in several books, but here it is tried to present them more understandable and straightforwardly. This helps in solving real problems of heterogeneous composite materials, especially those which are used in construction. Moreover, the fundamental experiments for characterizing the elastic and viscoelastic properties of fibrous and bituminous composites are introduced and summarized. Then after, some analytical and empirical formulations for deriving the material properties of composites from the properties of the basic constituents are presented. These are followed by numerical simulation techniques using the finite element method to simulate composite materials.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.