This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg–de Vries equation, shallow water equations and the Camassa–Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation. The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.
Much of Bembo's work is devoted to the external affairs of Venice, principally conflicts with other European states and with the Turks in the East. The History of Venice was published after his death, in Latin and in his own Italian version. This edition, completed by this third volume, makes it available for the first time in English translation.
The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.
This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg-de Vries equation, shallow water equations and the Camassa-Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation.The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.