Smart structures that contain embedded piezoelectric patches are loaded by both mechanical and electrical fields. Traditional plate and shell theories were developed to analyze structures subject to mechanical loads. However, these often fail when tasked with the evaluation of both electrical and mechanical fields and loads. In recent years more advanced models have been developed that overcome these limitations. Plates and Shells for Smart Structures offers a complete guide and reference to smart structures under both mechanical and electrical loads, starting with the basic principles and working right up to the most advanced models. It provides an overview of classical plate and shell theories for piezoelectric elasticity and demonstrates their limitations in static and dynamic analysis with a number of example problems. This book also provides both analytical and finite element solutions, thus enabling the reader to compare strong and weak solutions to the problems. Key features: compares a large variety of classical and modern approaches to plates and shells, such as Kirchhoff-Love , Reissner-Mindlin assumptions and higher order, layer-wise and mixed theories introduces theories able to consider electromechanical couplings as well as those that provide appropriate interface continuity conditions for both electrical and mechanical variables considers both static and dynamic analysis accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given as well as solve problems of their own The models currently used have a wide range of applications in civil, automotive, marine and aerospace engineering. Researchers of smart structures, and structural analysts in industry, will find all they need to know in this concise reference. Graduate and postgraduate students of mechanical, civil and aerospace engineering can also use this book in their studies. www.mul2.com
Questo libro giallo nasce da un messaggino inviato nella notte a un amico con richiesta d'aiuto: un cadavere è stato trovato in casa legato a una sedia. L'amico accorre ma serve la Polizia. E nell'intreccio della vicenda si muovono Poliziotti, Investigatori privati, balordi individui, pistole nascoste, gioielli rubati e trafficanti stranieri... in un miscuglio che va seguito con attenzione per non perdere il filo che porterà alla soluzione.
This book describes Italian mathematics in the period between the two World Wars. It analyzes the development by focusing on both the interior and the external influences. Italian mathematics in that period was shaped by a colorful array of strong personalities who concentrated their efforts on a select number of fields and won international recognition and respect in an incredibly short time. Consequently, Italy was considered a third mathematical power after France and Germany.
Pietro Bembo (1470–1547), a Venetian nobleman, later a cardinal of the Roman Catholic Church, was a celebrated Latin stylist and was widely admired for his writings in Italian as well. His early dialogue on the subject of love influenced the development of the literary vernacular, as did his Prose della volgar lingua (1525). From 1513 to 1521 he served Pope Leo X as Latin secretary and became known as the leading advocate of Ciceronian Latin in Europe and of the Tuscan dialect within Italy. He was named official historian of Venice in 1529 and began to compose in Latin his continuation of the city's history in twelve books, covering the years from 1487 to 1513. Although the work chronicles internal politics and events, much of it is devoted to the external affairs of Venice, principally conflicts with other European states (France, Spain, the Holy Roman Empire, Milan, and the papacy) and with the Turks in the East.
Smart structures that contain embedded piezoelectric patches are loaded by both mechanical and electrical fields. Traditional plate and shell theories were developed to analyze structures subject to mechanical loads. However, these often fail when tasked with the evaluation of both electrical and mechanical fields and loads. In recent years more advanced models have been developed that overcome these limitations. Plates and Shells for Smart Structures offers a complete guide and reference to smart structures under both mechanical and electrical loads, starting with the basic principles and working right up to the most advanced models. It provides an overview of classical plate and shell theories for piezoelectric elasticity and demonstrates their limitations in static and dynamic analysis with a number of example problems. This book also provides both analytical and finite element solutions, thus enabling the reader to compare strong and weak solutions to the problems. Key features: compares a large variety of classical and modern approaches to plates and shells, such as Kirchhoff-Love , Reissner-Mindlin assumptions and higher order, layer-wise and mixed theories introduces theories able to consider electromechanical couplings as well as those that provide appropriate interface continuity conditions for both electrical and mechanical variables considers both static and dynamic analysis accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given as well as solve problems of their own The models currently used have a wide range of applications in civil, automotive, marine and aerospace engineering. Researchers of smart structures, and structural analysts in industry, will find all they need to know in this concise reference. Graduate and postgraduate students of mechanical, civil and aerospace engineering can also use this book in their studies. www.mul2.com
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.