Ce livre constitue un expos‚ d‚taill‚ de la s‚rie de cours donn‚s en 2020 par le Prof. Nicolas Bergeron, titulaire de la Chaire Aisenstadt au CRM de Montr‚al. L'objet de ce texte est une ample g‚n‚ralisation d'une famille d'identit‚s classiques, notamment la formule d'addition de la fonction cotangente ou celle des s‚ries d'Eisenstein. Le livre relie ces identit‚s … la cohomologie de certains sous-groupes arithm‚tiques du groupe lin‚aire g‚n‚ral. Il rend explicite ces relations au moyen de la th‚orie des symboles modulaires de rang sup‚rieur, d‚voilant finalement un lien concret entre des objets de nature topologique et alg‚brique. This book provides a detailed exposition of the material presented in a series of lectures given in 2020 by Prof. Nicolas Bergeron while he held the Aisenstadt Chair at the CRM in Montr‚al. The topic is a broad generalization of certain classical identities such as the addition formulas for the cotangent function and for Eisenstein series. The book relates these identities to the cohomology of arithmetic subgroups of the general linear group. It shows that the relations can be made explicit using the theory of higher rank modular symbols, ultimately unveiling a concrete link between topological and algebraic objects. I think that the text ?Cocycles de groupe pour $mathrm{GL}_n$ et arrangements d'hyperplans? is terrific. I like how it begins in a leisurely, enticing way with an elementary example that neatly gets to the topic. The construction of these ?meromorphic function?-valued modular symbols are fundamental objects, and play (and will continue to play) an important role. ?Barry Mazur, Harvard University
American Mathematical Society, Centre de Recherches Math‚matiques
Published Date
ISBN 10
1470474115
ISBN 13
9781470474119
Select your Age
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.