Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thelene, Peter Swinnerton Dyer and Paul Vojta.
Modular Forms is a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to various subjects, such as the theory of quadratic forms, the proof of Fermat's Last Theorem and the approximation of π. The text gives a balanced overview of both the theoretical and computational sides of its subject, allowing a variety of courses to be taught from it.This second edition has been revised and updated. New material on the future of modular forms as well as a chapter about longer-form projects for students has also been added.
This book contains the notes of five short courses delivered at the "Centro Internazionale Matematico Estivo" session "Integral Geometry, Radon Transforms and Complex Analysis" held in Venice (Italy) in June 1996: three of them deal with various aspects of integral geometry, with a common emphasis on several kinds of Radon transforms, their properties and applications, the other two share a stress on CR manifolds and related problems. All lectures are accessible to a wide audience, and provide self-contained introductions and short surveys on the subjects, as well as detailed expositions of selected results.
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.
This book presents the arithmetic and metrical theory of regular continued fractions and is intended to be a modern version of A. Ya. Khintchine's classic of the same title. Besides new and simpler proofs for many of the standard topics, numerous numerical examples and applications are included (the continued fraction of e, Ostrowski representations and t-expansions, period lengths of quadratic surds, the general Pell's equation, homogeneous and inhomogeneous diophantine approximation, Hall's theorem, the Lagrange and Markov spectra, asymmetric approximation, etc). Suitable for upper level undergraduate and beginning graduate students, the presentation is self-contained and the metrical results are developed as strong laws of large numbers.
In this paper we explore a relationship that exists between the classical cusp form for subgroups of finite index in [italic]SL2([double-struck capital]Z) and certain differential equations, and we develop a connection between the equation's monodromy representation and the special values in the critical strip of the Dirichlet series associated to the cusp form.
This book is the first systematic attempt to analyse the growth of mass higher education in a specifically British context, while seeking to develop more theoretical perspectives on this transformation of elite university systems into open post-secondary education systems. It is divided into three main sections. The first examines the evolution of British higher education and the development of universities and other institutions. The second explores the political, social and economic context within which mass systems are developing. What are the links between post-industrial society, a post-Fordist economy and the mass university? The third section discusses the links between massification and wider currents in intellectual and scientific culture.
This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
Because of their applications in so many diverse areas, finite fields continue to play increasingly important roles in various branches of modern mathematics, including number theory, algebra, and algebraic geometry, as well as in computer science, information theory, statistics, and engineering. Computational and algorithmic aspects of finite field problems also continue to grow in importance. This volume contains the refereed proceedings of a conference entitled Finite Fields: Theory, Applications and Algorithms, held in August 1993 at the University of Nevada at Las Vegas. Among the topics treated are theoretical aspects of finite fields, coding theory, cryptology, combinatorial design theory, and algorithms related to finite fields. Also included is a list of open problems and conjectures. This volume is an excellent reference for applied and research mathematicians as well as specialists and graduate students in information theory, computer science, and electrical engineering.
An International Workshop on the Approximation and Computation of Complicated Dynamical Behavior, Deakin University, Geelong, Australia, July 12-16, 1993
An International Workshop on the Approximation and Computation of Complicated Dynamical Behavior, Deakin University, Geelong, Australia, July 12-16, 1993
Much of what is known about specific dynamical systems is obtained from numerical experiments. Although the discretization process usually has no significant effect on the results for simple, well-behaved dynamics, acute sensitivity to changes in initial conditions is a hallmark of chaotic behavior. How confident can one be that the numerical dynamics reflects that of the original system? Do numerically calculated trajectories always shadow a true one? What role does numerical analysis play in the study of dynamical systems? And conversely, can advances in dynamical systems provide new insights into numerical algorithms? These and related issues were the focus of the workshop on Chaotic Numerics, held at Deakin University in Geelong, Australia, in July 1993. The contributions to this book are based on lectures presented during the workshop and provide a broad overview of this area of research.
Investigates the analogous question for rational functions. This book describes the Galois theoretic translation, based on Chebotarev's density theorem, leads to a certain property of permutation groups, called exceptionality.
Peter Scott examines the development of mass higher education and calls for robust action to secure fair access at all levels and changes in the governance and management at both system and institutional levels to ensure more democratic accountability.
The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. The book draws on and gives accessible accounts of many disparate areas of mathematics, from algebraic geometry, moduli spaces, monodromy, equidistribution, and the Weil conjectures, to probability theory on the compact classical groups in the limit as their dimension goes to infinity and related techniques from orthogonal polynomials and Fredholm determinants.
Spectral geometry runs through much of contemporary mathematics, drawing on and stimulating developments in such diverse areas as Lie algebras, graph theory, group representation theory, and Riemannian geometry. The aim is to relate the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume brings together papers presented at the AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry, held in July 1993 at the University of Washington in Seattle. With contributions from some of the top experts in the field, this book presents an excellent overview of current developments in spectral geometry.
Other papers deal with maximizing or minimizing functions defined by the spectrum such as the heat kernel, the zeta function, and the determinant of the Laplacian, some from the point of view of identifying an extremal metric.
This book documents the history of pi from the dawn of mathematical time to the present. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet accessible, mathematics. The articles on pi collected herein fall into various classes. First and foremost there is a selection from the mathematical and computational literature of four millennia. There is also a variety of historical studies on the cultural significance of the number. Additionally, there is a selection of pieces that are anecdotal, fanciful, or simply amusing. For this new edition, the authors have updated the original material while adding new material of historical and cultural interest. There is a substantial exposition of the recent history of the computation of digits of pi, a discussion of the normality of the distribution of the digits, and new translations of works by Viete and Huygen.
SCIENCE JOURNALISM AT ITS BEST. . . An impeccably researched, amazingly up-to-date, crisply written and well-illustrated survey." --Nature At the cutting edge of the sciences, a dynamic new concept is emerging: complexity. In this groundbreaking new book, Peter Coveney and Roger Highfield explore how complexity in mathematics, physics, biology, chemistry, and even the social sciences is transforming not only the way we think about the universe, but also the very assumptions that underlie conventional science. Complexity is a watchword for a new way of thinking about the behavior of interacting units, whether they are atoms, ants in a colony, or neurons firing in a human brain. The rise of the electronic computer provided both the key and the catalyst to our exploration of complexity. A new generation of computers that runs on light and exploits the bizarre properties of quantum mechanics promises to deepen our understanding still further. The advances we have already witnessed are spectacular. The authors take us inside laboratories where scientists are evolving the genetic molecules that enabled life to emerge on earth and generating universes teeming with virtual creatures in cyber-space. We witness the utterly realistic behavior of a school of virtual fish--computer-generated replicas that have been trained to swim gracefully, hunt for food, and scatter at the approach of a leopard shark. Compelling in its clarity, far-reaching in its implications, vibrant with the excitement of new discovery, Frontiers of Complexity is an arresting account of how far science has come in the past fifty years and an essential guide to the rapidly approaching future. "[A] MARVELOUS AND COMPREHENSIVE WORK . . . Virtually any scientist or interested lay reader will find this book engrossing, edifying and inspiring." --Publishers Weekly (starred review)
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.