A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues.
For real-time systems, the worst-case execution time (WCET) is the key objective to be considered. Traditionally, code for real-time systems is generated without taking this objective into account and the WCET is computed only after code generation. Worst-Case Execution Time Aware Compilation Techniques for Real-Time Systems presents the first comprehensive approach integrating WCET considerations into the code generation process. Based on the proposed reconciliation between a compiler and a timing analyzer, a wide range of novel optimization techniques is provided. Among others, the techniques cover source code and assembly level optimizations, exploit machine learning techniques and address the design of modern systems that have to meet multiple objectives. Using these optimizations, the WCET of real-time applications can be reduced by about 30% to 45% on the average. This opens opportunities for decreasing clock speeds, costs and energy consumption of embedded processors. The proposed techniques can be used for all types real-time systems, including automotive and avionics IT systems.
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
The building blocks of today’s embedded systems-on-a-chip (SoC) are complex IP components and programmable processor cores. This means that more and more system functionality is implemented in software rather than in custom hardware motivating the need for highly optimized embedded software. Source Code Optimization Techniques for Data Flow Dominated Embedded Software is the first contribution focusing on the application of optimizations outside a compiler at the source code level. This book covers the following areas: - Several entirely new techniques are presented in combination with efficient algorithms for the most important ones - Control flow analysis and optimization of data-dominated applications is one of the main contributions of this book since this issue remained open up to now - Using real-life applications, large improvements in terms of runtimes and energy dissipation were achieved by the techniques presented in this book. Detailed results for a broad range of processors including DSPs, VLIWs and embedded RISC cores are discussed. Source Code Optimization Techniques is mostly self-contained and requires only a basic knowledge in software design. It is intended to be a key reference for researchers, design engineers and compiler / system CAD managers in industry who wish to anticipate the evolution of commercially available design tools over the next few years, or to make use of the concepts of this book in their own research and development.
It is well known that embedded systems have to be implemented efficiently. This requires that processors optimized for certain application domains are used in embedded systems. Such an optimization requires a careful exploration of the design space, including a detailed study of cost/performance tradeoffs. In order to avoid time-consuming assembly language programming during design space exploration, compilers are needed. In order to analyze the effect of various software or hardware configurations on the performance, retargetable compilers are needed that can generate code for numerous different potential hardware configurations. This book provides a comprehensive and up-to-date overview of the fast developing area of retargetable compilers for embedded systems. It describes a large set important tools as well as applications of retargetable compilers at different levels in the design flow. Retargetable Compiler Technology for Embedded Systems is mostly self-contained and requires only fundamental knowledge in software and compiler design. It is intended to be a key reference for researchers and designers working on software, compilers, and processor optimization for embedded systems.
The Barbarians Speak re-creates the story of Europe's indigenous people who were nearly stricken from historical memory even as they adopted and transformed aspects of Roman culture. The Celts and Germans inhabiting temperate Europe before the arrival of the Romans left no written record of their lives and were often dismissed as "barbarians" by the Romans who conquered them. Accounts by Julius Caesar and a handful of other Roman and Greek writers would lead us to think that prior to contact with the Romans, European natives had much simpler political systems, smaller settlements, no evolving social identities, and that they practiced human sacrifice. A more accurate, sophisticated picture of the indigenous people emerges, however, from the archaeological remains of the Iron Age. Here Peter Wells brings together information that has belonged to the realm of specialists and enables the general reader to share in the excitement of rediscovering a "lost people." In so doing, he is the first to marshal material evidence in a broad-scale examination of the response by the Celts and Germans to the Roman presence in their lands. The recent discovery of large pre-Roman settlements throughout central and western Europe has only begun to show just how complex native European societies were before the conquest. Remnants of walls, bone fragments, pottery, jewelry, and coins tell much about such activities as farming, trade, and religious ritual in their communities; objects found at gravesites shed light on the richly varied lives of individuals. Wells explains that the presence--or absence--of Roman influence among these artifacts reveals a range of attitudes toward Rome at particular times, from enthusiastic acceptance among urban elites to creative resistance among rural inhabitants. In fascinating detail, Wells shows that these societies did grow more cosmopolitan under Roman occupation, but that the people were much more than passive beneficiaries; in many cases they helped determine the outcomes of Roman military and political initiatives. This book is at once a provocative, alternative reading of Roman history and a catalyst for overturning long-standing assumptions about nonliterate and indigenous societies.
Alongside the ‘critical theory’ of the Frankfurt School, West Germany was also home to another influential Marxist current known as the Marburg School. In this volume, Marburg disciple Lothar Peter traces the school’s history and situates it in the political discourse and developments of its time. The renowned political scientist Wolfgang Abendroth plays a large role, but unlike most histories of the Marburg School Peter also takes the sociologists Werner Hofmann and Heinz Maus into account as well as their many students and successors. They were united by the conviction that teaching and scholarship must necessarily be tied to the practical goal of transforming society – an approach that met with considerable opposition in the harshly anti-Communist atmosphere of the period. This book was first published in 2014 as Marx an die Uni. Die "Marburger Schule" – Geschichte, Probleme, Akteure by PapyRossa Verlag, Cologne, ISBN 978-38-94-38546-0. With a new Introduction by Ingar Solty.
This is a guide to the lives and work of more than 500 Americans, Canadians and Europeans in the categories subsumed under the term "educationists". Entries are almost entirely restricted to those with main careers in the 19th and 20th centuries; none of the subjects is still living.
This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like filters and data converters are covered to the extent desirable by a systems architect. The handling of individual elements concludes with power supplies including regulators and converters. The final section of the text is composed of four case studies: • electric-drive control, permanent magnet synchronous motors in particular; • lock-in amplification with measurement circuits for weight and torque, and moisture; • design of a simple continuous wave radar that can be operated to measure speed and distance; and • design of a Fourier transform infrared spectrometer for process applications. End-of-chapter exercises will assist the student to assimilate the tutorial material and these are supplemented by a downloadable solutions manual for instructors. The “pen-and-paper” problems are further augmented with laboratory activities. In addition to its student market, Engineering Embedded Systems will assist industrial practitioners working in systems architecture and the design of electronic measurement systems to keep up to date with developments in embedded systems through self study.
Memory Architecture Exploration for Programmable Embedded Systems addresses efficient exploration of alternative memory architectures, assisted by a "compiler-in-the-loop" that allows effective matching of the target application to the processor-memory architecture. This new approach for memory architecture exploration replaces the traditional black-box view of the memory system and allows for aggressive co-optimization of the programmable processor together with a customized memory system. The book concludes with a set of experiments demonstrating the utility of this exploration approach. The authors perform architecture and compiler exploration for a set of large, real-life benchmarks, uncovering promising memory configurations from different perspectives, such as cost, performance and power.
Synthesis and Optimization of DSP Algorithms describes approaches taken to synthesising structural hardware descriptions of digital circuits from high-level descriptions of Digital Signal Processing (DSP) algorithms. The book contains: -A tutorial on the subjects of digital design and architectural synthesis, intended for DSP engineers, -A tutorial on the subject of DSP, intended for digital designers, -A discussion of techniques for estimating the peak values likely to occur in a DSP system, thus enabling an appropriate signal scaling. Analytic techniques, simulation techniques, and hybrids are discussed. The applicability of different analytic approaches to different types of DSP design is covered, -The development of techniques to optimise the precision requirements of a DSP algorithm, aiming for efficient implementation in a custom parallel processor. The idea is to trade-off numerical accuracy for area or power-consumption advantages. Again, both analytic and simulation techniques for estimating numerical accuracy are described and contrasted. Optimum and heuristic approaches to precision optimisation are discussed, -A discussion of the importance of the scheduling, allocation, and binding problems, and development of techniques to automate these processes with reference to a precision-optimized algorithm, -Future perspectives for synthesis and optimization of DSP algorithms.
Speed improvements in memory systems have not kept pace with the speed improvements of processors, leading to embedded systems whose performance is limited by the memory. This book presents design techniques for fast, energy-efficient and timing-predictable memory systems that achieve high performance and low energy consumption. In addition, the use of scratchpad memories significantly improves the timing predictability of the entire system, leading to tighter worst case execution time bounds.
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.
This book proposes novel memory hierarchies and software optimization techniques for the optimal utilization of memory hierarchies. It presents a wide range of optimizations, progressively increasing in the complexity of analysis and of memory hierarchies. The final chapter covers optimization techniques for applications consisting of multiple processes found in most modern embedded devices.
Speed improvements in memory systems have not kept pace with the speed improvements of processors, leading to embedded systems whose performance is limited by the memory. This book presents design techniques for fast, energy-efficient and timing-predictable memory systems that achieve high performance and low energy consumption. In addition, the use of scratchpad memories significantly improves the timing predictability of the entire system, leading to tighter worst case execution time bounds.
Provides the material for a first course on embedded systems. This book aims to provide an overview of embedded system design and to relate the most important topics in embedded system design to each other. It aims to help motivate students as well as professors to put more emphasis on education in embedded systems.
ESWEEK'12: Eighth Embedded System Week Oct 07, 2012-Oct 12, 2012 Tampere, Finland. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
For real-time systems, the worst-case execution time (WCET) is the key objective to be considered. Traditionally, code for real-time systems is generated without taking this objective into account and the WCET is computed only after code generation. Worst-Case Execution Time Aware Compilation Techniques for Real-Time Systems presents the first comprehensive approach integrating WCET considerations into the code generation process. Based on the proposed reconciliation between a compiler and a timing analyzer, a wide range of novel optimization techniques is provided. Among others, the techniques cover source code and assembly level optimizations, exploit machine learning techniques and address the design of modern systems that have to meet multiple objectives. Using these optimizations, the WCET of real-time applications can be reduced by about 30% to 45% on the average. This opens opportunities for decreasing clock speeds, costs and energy consumption of embedded processors. The proposed techniques can be used for all types real-time systems, including automotive and avionics IT systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.