This is not a conventional book. It is designed to stimulate and challenge all people who are curious to find out about the world they inhabit and their place within it. It does this by suggesting questions and lines of questioning on a wide range of topics. The book does not provide answers or model arguments but prompts people to create their own questions and a reading log or journal. To this end, almost all questions have a list of books or articles to provide a starter for stimulating further reading. Once you start, you will be hooked! Never stop questioning.
Spectral geometry runs through much of contemporary mathematics, drawing on and stimulating developments in such diverse areas as Lie algebras, graph theory, group representation theory, and Riemannian geometry. The aim is to relate the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume brings together papers presented at the AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry, held in July 1993 at the University of Washington in Seattle. With contributions from some of the top experts in the field, this book presents an excellent overview of current developments in spectral geometry.
Our time is characterized by an explosive growth in the use of ever more complicated and sophisticated (computer) models. These models rely on dynamical systems theory for the interpretation of their results and on probability theory for the quantification of their uncertainties. A conscientious and intelligent use of these models requires that both these theories are properly understood. This book is to provide such understanding. It gives a unifying treatment of dynamical systems theory and probability theory. It covers the basic concepts and statements of these theories, their interrelations, and their applications to scientific reasoning and physics. The book stresses the underlying concepts and mathematical structures but is written in a simple and illuminating manner without sacrificing too much mathematical rigor. The book is aimed at students, post-docs, and researchers in the applied sciences who aspire to better understand the conceptual and mathematical underpinnings of the models that they use. Despite the peculiarities of any applied science, dynamics and probability are the common and indispensable tools in any modeling effort. The book is self-contained, with many technical aspects covered in appendices, but does require some basic knowledge in analysis, linear algebra, and physics. Peter Müller, now a professor emeritus at the University of Hawaii, has worked extensively on ocean and climate models and the foundations of complex system theories.
Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.
A renowned mathematician who considers himself both applied and theoretical in his approach, Peter Lax has spent most of his professional career at NYU, making significant contributions to both mathematics and computing. He has written several important published works and has received numerous honors including the National Medal of Science, the Lester R. Ford Award, the Chauvenet Prize, the Semmelweis Medal, the Wiener Prize, and the Wolf Prize. Several students he has mentored have become leaders in their fields. Two volumes span the years from 1952 up until 1999, and cover many varying topics, from functional analysis, partial differential equations, and numerical methods to conservation laws, integrable systems and scattering theory. After each paper, or collection of papers, is a commentary placing the paper in context and where relevant discussing more recent developments. Many of the papers in these volumes have become classics and should be read by any serious student of these topics. In terms of insight, depth, and breadth, Lax has few equals. The reader of this selecta will quickly appreciate his brilliance as well as his masterful touch. Having this collection of papers in one place allows one to follow the evolution of his ideas and mathematical interests and to appreciate how many of these papers initiated topics that developed lives of their own.
Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
This book adopts a practical, example-led approach to mathematical analysis that shows both the usefulness and limitations of the results. A number of applications show what the subject is about and what can be done with it; the applications in Fourier theory, distributions and asymptotics show how the results may be put to use. Exercises at the end of each chapter, of varying levels of difficulty, develop new ideas and present open problems.
The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.
This book centers on normal families of holomorphic and meromorphic functions and also normal functions. The authors treat one complex variable, several complex variables, and infinitely many complex variables (i.e., Hilbert space). The theory of normal families is more than 100 years old. It has played a seminal role in the function theory of complex variables. It was used in the first rigorous proof of the Riemann mapping theorem. It is used to study automorphism groups of domains, geometric analysis, and partial differential equations. The theory of normal families led to the idea, in 1957, of normal functions as developed by Lehto and Virtanen. This is the natural class of functions for treating the Lindelof principle. The latter is a key idea in the boundary behavior of holomorphic functions. This book treats normal families, normal functions, the Lindelof principle, and other related ideas. Both the analytic and the geometric approaches to the subject area are offered. The authors include many incisive examples. The book could be used as the text for a graduate research seminar. It would also be useful reading for established researchers and for budding complex analysts.
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).
This book is an extensively elaborated treatise on physical layer concepts of advanced mobile communications. Setting out from the author's own experience of university teaching for over three decades, the book covers the most fundamental aspects of physical layer transceivers for mobile communications ranging from approximation schemes such as sampling, the Fourier series and the Fourier transformation over multi-antenna techniques including aspects of curvilinear coordinate systems, tensor calculus, determinant computation rules, array antennas, spatial sampling, details on probability theory and information theory, optimum detection with soft outputs and spatial multiplexing to orthogonal frequency division multiplexing.
Further Archaeological Investigations for the Daventry International Rail Freight Terminal, Crick & Kilsby, Northamptonshire 1993-2013 (DIRFT Volume II)
Further Archaeological Investigations for the Daventry International Rail Freight Terminal, Crick & Kilsby, Northamptonshire 1993-2013 (DIRFT Volume II)
Excavations of a large Iron Age farming settlement in Northamptonshite spread across five sites, four studied here (The Lodge, Long Dole, Crick Hotel and Nortoft Lane, Kilsby) with Covert Farm, Crick studied in Volume I (9781784912086).
This book provides a comprehensive exposition of M-ideal theory, a branch ofgeometric functional analysis which deals with certain subspaces of Banach spaces arising naturally in many contexts. Starting from the basic definitions the authors discuss a number of examples of M-ideals (e.g. the closed two-sided ideals of C*-algebras) and develop their general theory. Besides, applications to problems from a variety of areas including approximation theory, harmonic analysis, C*-algebra theory and Banach space geometry are presented. The book is mainly intended as a reference volume for researchers working in one of these fields, but it also addresses students at the graduate or postgraduate level. Each of its six chapters is accompanied by a Notes-and-Remarks section which explores further ramifications of the subject and gives detailed references to the literature. An extensive bibliography is included.
The classic Teenage Mutant Ninja Turtles action continues in the third volume of IDW''s Ultimate Collections! In this outing, you''ll find issues #12, 14, 15, 17, and 19-21, featuring stories like "Survivalists," "The Unmentionables," "Dome Doom," and the multi-part "Return to New York." Featuring annotations from Eastman and Laird, you''ve never seen the TURTLES like this!
Introduction to temperate floodplains -- Hydrology -- Floodplain and geomorphology -- Biogeochemistry -- Ecology: introduction -- Floodplain forests -- Primary and secondary production -- Fish and other vertebrates -- Ecosystem services and floodplain reconciliation -- Floodplains as green infrastructure -- Case studies of floodplain management and reconciliation -- Central Valley floodplains: introduction and history -- Central Valley floodplains today -- Reconciling Central Valley floodplains -- Conclusions: managing temperate floodplains for multiple benefits
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
There is an extensive literature in the form of papers (but no books) on lattice dynamical systems. The book focuses on dissipative lattice dynamical systems and their attractors of various forms such as autonomous, nonautonomous and random. The existence of such attractors is established by showing that the corresponding dynamical system has an appropriate kind of absorbing set and is asymptotically compact in some way.There is now a very large literature on lattice dynamical systems, especially on attractors of all kinds in such systems. We cannot hope to do justice to all of them here. Instead, we have focused on key areas of representative types of lattice systems and various types of attractors. Our selection is biased by our own interests, in particular to those dealing with biological applications. One of the important results is the approximation of Heaviside switching functions in LDS by sigmoidal functions.Nevertheless, we believe that this book will provide the reader with a solid introduction to the field, its main results and the methods that are used to obtain them.
Big data thrives on extracting knowledge from a large number of data sets. But how is an application possible when a single data set is several gigabytes in size? The innovative data compression techniques from the field of machine learning and modeling using Bayesian networks, which have been theoretically developed and practically implemented here, can reduce these huge amounts of data to a manageable size. By eliminating redundancies in location, time, and between simulation results, data reductions to less than 1% of the original size are possible. The developed method represents a promising approach whose use goes far beyond the application example of crash test simulations chosen here.
This graduate level text covers the theory of stochastic integration, an important area of Mathematics that has a wide range of applications, including financial mathematics and signal processing. Aimed at graduate students in Mathematics, Statistics, Probability, Mathematical Finance, and Economics, the book not only covers the theory of the stochastic integral in great depth but also presents the associated theory (martingales, Levy processes) and important examples (Brownian motion, Poisson process).
The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II.
Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition presents fundamental, classical statistical concepts at the doctorate level. It covers estimation, prediction, testing, confidence sets, Bayesian analysis, and the general approach of decision theory. This edition gives careful proofs of major results and explains ho
The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.
This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.
The book is about exact space-time models of the gravitational fields produced by gravitational radiation. The authors’ extensive work in the field is reviewed in order to stimulate the study of such models, that have been known for a long time, and to highlight interesting physical aspects of the existing models in some novel detail. There is an underlying simplicity to the gravitational radiation studied in this book. Apart from the basic assumption that the radiation has clearly identifiable wave fronts, the gravitational waves studied are directly analogous to electromagnetic waves. The book is meant for advanced students and researchers who have a knowledge of general relativity sufficient to carry out research in the field.
Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.
Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.
The aim of this book is to make Robinson's discovery, and some of the subsequent research, available to students with a background in undergraduate mathematics. In its various forms, the manuscript was used by the second author in several graduate courses at the University of Illinois at Urbana-Champaign. The first chapter and parts of the rest of the book can be used in an advanced undergraduate course. Research mathematicians who want a quick introduction to nonstandard analysis will also find it useful. The main addition of this book to the contributions of previous textbooks on nonstandard analysis (12,37,42,46) is the first chapter, which eases the reader into the subject with an elementary model suitable for the calculus, and the fourth chapter on measure theory in nonstandard models.
The last few years have seen many developments in the study of ?frustrated? systems, such as spin glasses and random fields. In addition, the application of the idea of spin glasses to other branches of physics, such as vortex lines in high temperature superconductors, protein folding, structural glasses, and the vulcanization of rubber, has been flourishing. The earlier reviews are several years old, so now is an appropriate time to summarize the recent developments. The articles in this book have been written by leading researchers and include theoretical and experimental studies, and large-scale numerical work (using state-of-the-art algorithms designed specifically for spin-glass-type problems), as well as analytical studies.
Logic is a foundational mathematical discipline for Computer Science. This unique compendium provides the main ideas and techniques originating from logic. It is divided into two volumes — propositional logic and predicate logic. The volume presents some of the most important concepts starting with a variety of logic formalisms — Hilbert/Frege systems, tableaux, sequents, and natural deduction in both propositional and first-order logic, as well as transformations between these formalisms. Topics like circuit design, resolution, cutting planes, Hintikka sets, paramodulation, and program verification, which do not appear frequently in logic books are discussed in detail.The useful reference text has close to 800 exercises and supplements to deepen understanding of the subject. It emphasizes proofs and overcomes technical difficulties by providing detailed arguments. Computer scientists and mathematicians will benefit from this volume.
This book covers recent results in linear algebra with indefinite inner product. It includes applications to differential and difference equations with symmetries, matrix polynomials and Riccati equations. These applications are based on linear algebra in spaces with indefinite inner product. The latter forms an independent branch of linear algebra called indefinite linear algebra. This new subject is presented following the principles of a standard linear algebra course.
Mechanical Design Engineering Handbook, Second Edition, is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of the machine elements that are fundamental to a wide range of engineering applications. This updated edition includes new material on tolerancing, alternative approaches to design, and robotics, as well as references to the latest ISO and US engineering regulations. Sections cover bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements. This practical handbook is an ideal shelf reference for those working in mechanical design across a variety of industries. In addition, it is also a valuable learning resource for advanced students undertaking engineering design modules and projects as part of broader mechanical, aerospace, automotive and manufacturing programs. - Presents a clear, concise text that explains key component technology, with step-by-step procedures, fully worked design scenarios, component images and cross-sectional line drawings - Provides essential data, equations and interactive ancillaries, including calculation spreadsheets, to inform decision-making, design evaluation and incorporation of components into overall designs - Includes procedures and methods that are covered to national and international standards where appropriate - New to this edition: flow-charts to help select technology; Failure Mode Effects Analysis (FMEA), product, service and system design models, Functional Analysis Diagrams (FADs), Design for Excellence (DFX), Design for MADE, and the process of remanufacture
Die Quintessenz aus über 100 Originalarbeiten! Ausgehend von den Grundpfeilern der modernen Wahrscheinlichkeitstheorie entwickeln die Autoren dieses in sich geschlossenen, gut verständlich formulierten Bandes die Theorie der unendlich teilbaren Verteilungen und der regulären Variation. Im Anschluss erarbeiten sie die allgemeine Grenzwerttheorie für unabhängige Zufallsvektoren. Dabei achten sie sorgfältig darauf, alle Aspekte in den Kontext der Wahrscheinlichkeitslehre und Statistik zu stellen und bieten dafür eine Fülle von Zusatzinformationen an.
Pharmaceutical Care Practice, 3e provides the basic information necessary to establish, support, deliver, and maintain medication management services. This trusted text explains how a practitioner delivers pharmaceutical care services and provides a vision of how these services fit into the evolving healthcare structure. Whether you are a student or a practicing pharmacist seeking to improve your patient-care skills, Pharmaceutical Care Practice, 3e provides the step-by-step implementation strategies necessary to practice in this patient-centered environment. This practical guide to providing pharmaceutical care helps you to: Understand your growing role in drug therapy assessment and delivery Learn an effective process for applying your pharmacotherapeutic knowledge to identify and prevent or resolve drug therapy problems Establish a strong therapeutic relationship with your patients Optimize your patients’ well-being by achieving therapeutic goals Improve your follow-up evaluation abilities Documents your pharmaceutical care and obtain reimbursement Work collaboratively with other patient care providers The patient-centered approach advocated by the authors, combined with an orderly, logical, rational decision-making process assessing the indication, effectiveness, safety, and convenience of all patient drug therapies will have a measurable positive impact on the outcomes of drug therapy.
This set features Linear Algebra and Its Applications, Second Edition (978-0-471-75156-4) Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals. and Functional Analysis (978-0-471-55604-6) both by Peter D. Lax.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.