Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is quite satisfactory and natural for scalar systems, the study of multi-input, multi-output linear time invariant control systems requires projective algebraic geometry. Thus, this second volume deals with multi-variable linear systems and pro jective algebraic geometry. The results are deeper and less transparent, but are also quite essential to an understanding of linear control theory. A review of * From the Preface to Part 1. viii Preface the scalar theory is included along with a brief summary of affine algebraic geometry (Appendix E).
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years. The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems. The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik
Macroevolutionary inference has historically been treated as a two-step process, involving the inference of a tree, and then inference of a macroevolutionary model using that tree. Newer models blend the two steps. These methods make more complete use of fossils than the previous generation of Bayesian phylogenetic models. They also involve many more parameters than prior models, including parameters about which empiricists may have little intuition. In this Element, we set forth a framework for fitting complex, hierarchical models. The authors ultimately fit and use a joint tree and diversification model to estimate a dated phylogeny of the Cincta (Echinodermata), a morphologically distinct group of Cambrian echinoderms that lack the fivefold radial symmetry characteristic of extant members of the phylum. Although the phylogeny of cinctans remains poorly supported in places, this Element shows how models of character change and diversification contribute to understanding patterns of phylogenetic relatedness and testing macroevolutionary hypotheses.
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years. The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems. The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.
Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.
The Fourth Edition of Greene's Protective Groups in Organic Synthesis continues to be an indispensable reference for controlling the reactivity of the most common functional groups during a synthetic sequence. This new edition incorporates the significant developments in the field since publication of the third edition in 1998, including... New protective groups such as the fluorous family and the uniquely removable 2-methoxybenzenesulfonyl group for the protection of amines New techniques for the formation and cleavage of existing protective groups, with examples to illustrate each new technique Expanded coverage of the unexpected side reactions that occur with protective groups New chart covering the selective deprotection of silyl ethers 3,100 new references from the professional literature The content is organized around the functional group to be protected, and ranges from the simplest to the most complex and highly specialized protective groups.
On being told that "translation is an impossible thing," Anatole France replied: "precisely, my friend; the recognition of that truth is a necessary preliminary to success in art." The task of Transplantings is to add flesh and bones to that familiar quip. Indeed, Daniel Weissbort notes that Viereck's study represented a sixty-five year long project. Now, it is finally being brought to print in its full form, with the completion of the final manuscript shortly before Viereck's death. If translation is a special genre in its own right, the translation of poetry, especially from major foreign languages, is a special subset of that genre. What emerges in the imperfect act of translation is an aesthetic dimension that Viereck considers unique in its own right. Transplantings provides new insight into Viereck as a poet of substance, but more than that as a public intellectual. He is critical in probing the work of the major figures such as Stefan George and Georg Heym. To round out this monumental new look at German poetical history, Viereck reviews Goethe, Novalis, and Rilke among others. For Viereck, the difference between the poetical and the political is critical. The quality of poetry is not measured by politics, nor can the worth of political action be defined by commitment to the poetical. The experience of German thought, as well as French and Italian efforts, reveals a divide that can be narrowed but hardly bridged by rhetoric. Transplantings does not simplify the task of the reader. Rather it shows without doubt that the passion of great poetry is part of a national tradition. Efforts at translation indicate how such poetry becomes part of an international culture. This is a major work by one of the great thinkers of the twentieth century. It merits reading, and then, re-reading.
Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.
Keeping up with the rapidly growing research base, the leading graduate-level psychology of religion text is now in a fully updated fifth edition. It takes a balanced, empirically driven approach to understanding the role of religion in individual functioning and social behavior. Integrating research on numerous different faith traditions, the book addresses the quest for meaning; links between religion and biology; religious thought, belief, and behavior across the lifespan; experiential dimensions of religion and spirituality; the social psychology of religious organizations; and connections to coping, adjustment, and mental disorder. Chapter-opening quotations and topical research boxes enhance the readability of this highly instructive text. New to This Edition *New topics: cognitive science of religion; religion and violence; and groups that advocate terrorist tactics. *The latest empirical findings, including hundreds of new references. *Expanded discussion of atheism and varieties of nonbelief. *More research on religions outside the Judeo-Christian tradition, particularly Islam. *State-of-the-art research methods, including techniques for assessing neurological states.
Actuator saturation is probably the most frequent nonlinearity encountered in control applications. Input saturation leads to controller windup, removable by structural modification during compensator realization and plant windup which calls for additional dynamics. This book presents solutions to the windup prevention problem for stable and unstable single-input-single-output and multiple-input-multiple-output (MIMO) systems.
The authors of the present book share the view that groups and semigroups playa funda mental role in the structure of the complex systems which they are studying. A serious effort was made to implement this point of view by presenting the fundamental concepts pertaining to groups and semigroups before going into the various fields of application. The first two chapters are written in this spirit. The following seven chapters deal with groups in relation to specific systems and lead from basic notions to high-level applications. The systems under study are in all cases characterized by a high degree of complexity as found in the physics of many degrees of freedom and in the theory of automata and systems. In 1977 the authors from the University of Tiibingen (M. Dal Cin, G. John, P. Kramer, A. Rieckers, K. Scheerer and H. Stumpf) organized an International Summer School on Groups and Many-Body Physics. The lectures presented at this School dealt specifically with this interplay of groups and complex systems. The contributions of this book cover the fields which were treated in a condensed form at the Summer School.
The book describes what these models are, what they are based on, how they function, and then, most innovatively, how they can be used to generate new useful knowledge about the environmental system. Discusses this generation of knowledge by computer models from an epistemological perspective and illustrates it by numerous examples from applied and fundamental research. Includes ample technical appendices and is a valuable source of information for graduate students and scientists alike working in the field of environmental sciences.
This volume consists of 15 articles written by experts in stochastic analysis. The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract the attention of mathematicians of all generations. Together with a short but thorough introduction to SPDEs, it presents a number of optimal, and essentially unimprovable, results about solvability for a large class of both linear and non-linear equations. The other papers in this volume were specially written for the occasion of Prof RozovskiiOCOs 60th birthday. They tackle a wide range of topics in the theory and applications of stochastic differential equations, both ordinary and with partial derivatives.
Combining innovative archaeological analysis with historical research, Peter E. Pope examines the way of life that developed in seventeenth-century Newfoundland, where settlement was sustained by seasonal migration to North America's oldest industry, the cod fishery. The unregulated English settlements that grew up around the exchange of fish for wine served the fishery by catering to nascent consumer demand. The English Shore became a hub of transatlantic trade, linking Newfoundland with the Chesapeake, New and old England, southern Europe, and the Atlantic islands. Pope gives special attention to Ferryland, the proprietary colony founded by Sir George Calvert, Lord Baltimore, in 1621, but later taken over by the London merchant Sir David Kirke and his remarkable family. The saga of the Kirkes provides a narrative line connecting social and economic developments on the English Shore with metropolitan merchants, proprietary rivalries, and international competition. Employing a rich variety of evidence to place the fisheries in the context of transatlantic commerce, Pope makes Newfoundland a fresh point of view for understanding the demographic, economic, and cultural history of the expanding North Atlantic world.
True Digital Control: Statistical Modelling andNon–Minimal State Space Designdevelops a true digitalcontrol design philosophy that encompasses data–basedmodel identification, through to control algorithm design,robustness evaluation and implementation. With a heritage from bothclassical and modern control system synthesis, this book issupported by detailed practical examples based on theauthors’ research into environmental, mechatronic and roboticsystems. Treatment of both statistical modelling and control designunder one cover is unusual and highlights the important connectionsbetween these disciplines. Starting from the ubiquitous proportional–integralcontroller, and with essential concepts such as pole assignmentintroduced using straightforward algebra and block diagrams, thisbook addresses the needs of those students, researchers andengineers, who would like to advance their knowledge of controltheory and practice into the state space domain; and academics whoare interested to learn more about non–minimal state variablefeedback control systems. Such non–minimal state feedback isutilised as a unifying framework for generalised digital controlsystem design. This approach provides a gentle learning curve, fromwhich potentially difficult topics, such as optimal, stochastic andmultivariable control, can be introduced and assimilated in aninteresting and straightforward manner. Key features: Covers both system identification and control systemdesign in a unified manner Includes practical design case studies and simulationexamples Considers recent research into time–variable andstate–dependent parameter modelling and control, essentialelements of adaptive and nonlinear control system design, and thedelta–operator (the discrete–time equivalent of thedifferential operator) systems Accompanied by a website hosting MATLAB examples True Digital Control: Statistical Modelling andNon–Minimal State Space Design is a comprehensive andpractical guide for students and professionals who wish to furthertheir knowledge in the areas of modern control and systemidentification.
In Neural Organization, Arbib, Érdi, and Szentágothai integrate structural, functional, and dynamical approaches to the interaction of brain models and neurobiologcal experiments. In Neural Organization, Arbib, Érdi, and Szentágothai integrate structural, functional, and dynamical approaches to the interaction of brain models and neurobiologcal experiments. Both structure-based "bottom-up" and function- based "top-down" models offer coherent concepts by which to evaluate the experimental data. The goal of this book is to point out the advantages of a multidisciplinary, multistrategied approach to the brain. Part I of Neural Organization provides a detailed introduction to each of the three areas of structure, function, and dynamics. Structure refers to the anatomical aspects of the brain and the relations between different brain regions. Function refers to skills and behaviors, which are explained by means of functional schemas and biologically based neural networks. Dynamics refers to the use of a mathematical framework to analyze the temporal change of neural activities and synaptic connectivities that underlie brain development and plasticity—in terms of both detailed single-cell models and large-scale network models. In part II, the authors show how their systematic approach can be used to analyze specific parts of the nervous system—the olfactory system, hippocampus, thalamus, cerebral cortex, cerebellum, and basal ganglia—as well as to integrate data from the study of brain regions, functional models, and the dynamics of neural networks. In conclusion, they offer a plan for the use of their methods in the development of cognitive neuroscience.
Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.
This bestselling textbook will introduce undergraduate bioengineering students to the fundamental concepts and techniques, with the basic theme of integrative bioengineering. It covers bioengineering of several body systems, organs, tissues, and cells, integrating physiology at these levels with engineering concepts and approaches; novel developments in tissue engineering, regenerative medicine, nanoscience and nanotechnology; state-of-the-art knowledge in systems biology and bioinformatics; and socio-economic aspects of bioengineering.One of the distinctive features of the book is that it is integrative in nature (integration of biology, medicine and engineering, across different levels of the biological hierarchy, and basic knowledge with applications). It is unique in that it covers fundamental aspects of bioengineering, cutting-edge frontiers, and practical applications, as well as perspectives of bioengineering development. Furthermore, it covers important socio-economical aspects of bioengineering such as ethics and entrepreneurism.
Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design. Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented. The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
In Seeing the Raven, Peter M. Leschak blends humor, philosophy, and a keen sense of nature's beauty and challenges. Drawing on his many interests -- fly fishing and wild-land fire fighting, backyard astronomy and ecology, chain saws and ice skates, turtles and timberwolves -- he confronts questions that transcend the particulars of his experience. Rich with anecdotes and allusions, its moments of pathos and joy unfold against the beautiful, though often forbidding, landscape of northeastern Minnesota. It is a book about death, renewal, and a search for meaning in nature.
Lnear prediction theory and the related algorithms have matured to the point where they now form an integral part of many real-world adaptive systems. When it is necessary to extract information from a random process, we are frequently faced with the problem of analyzing and solving special systems of linear equations. In the general case these systems are overdetermined and may be characterized by additional properties, such as update and shift-invariance properties. Usually, one employs exact or approximate least-squares methods to solve the resulting class of linear equations. Mainly during the last decade, researchers in various fields have contributed techniques and nomenclature for this type of least-squares problem. This body of methods now constitutes what we call the theory of linear prediction. The immense interest that it has aroused clearly emerges from recent advances in processor technology, which provide the means to implement linear prediction algorithms, and to operate them in real time. The practical effect is the occurrence of a new class of high-performance adaptive systems for control, communications and system identification applications. This monograph presumes a background in discrete-time digital signal processing, including Z-transforms, and a basic knowledge of discrete-time random processes. One of the difficulties I have en countered while writing this book is that many engineers and computer scientists lack knowledge of fundamental mathematics and geometry.
Stochastic Partial Differential Equations analyzes mathematical models of time-dependent physical phenomena on microscopic, macroscopic and mesoscopic levels. It provides a rigorous derivation of each level from the preceding one and examines the resulting mesoscopic equations in detail. Coverage first describes the transition from the microscopic equations to the mesoscopic equations. It then covers a general system for the positions of the large particles.
During the Middle Ages, artistic ideas were transmitted from one region to another and passed on from one generation to the next, in the form of drawings. This kind of handmade reproduction, 'exemplum' in Latin, was used to record the form and content of works of art. Some of those drawings have survived in 'model books'. The author presents a fascinating account of many and various aspects of these drawings with special emphasis on how they contribute to our understanding of the genesis of medieval works of art. Exemplum will be a standard work of reference for many years to come
Dictionary of Carbohydrates print entries are listed in alphabetical order by entry name, name index, and molecular formula index. The data included in each entry includes:
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.