This book documents the history of pi from the dawn of mathematical time to the present. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet accessible, mathematics. The articles on pi collected herein fall into various classes. First and foremost there is a selection from the mathematical and computational literature of four millennia. There is also a variety of historical studies on the cultural significance of the number. Additionally, there is a selection of pieces that are anecdotal, fanciful, or simply amusing. For this new edition, the authors have updated the original material while adding new material of historical and cultural interest. There is a substantial exposition of the recent history of the computation of digits of pi, a discussion of the normality of the distribution of the digits, and new translations of works by Viete and Huygen.
The literature on inequalities is vast-in recent years the number of papers as well as the number of journals devoted to the subject have increased dramatically. At best, locating a particular inequality within the literature can be a cumbersome task. A Dictionary of Inequalities ends the dilemma of where to turn to find a result, a related inequality, or the references to the information you need. It provides a concise, alphabetical listing of each inequality-by its common name or its subject-with a short statement of the result, some comments, references to related inequalities, and a list of sources for further information. The author uses only the most elementary of mathematical terminology and does not offer proofs, thus making an interest in inequalities the only prerequisite for using the text. The author focuses on intuitive, physical forms of inequalities rather than their most general versions, and retains the beauty and importance of original versions rather than listing their later, abstract forms. He presents each in its simplest form with other renditions, such as for complex numbers and vectors, as extensions or under different headings. He has kept the book to a more manageable size by omitting inequalities in areas-such as elementary geometric and trigonometric inequalities-rarely used outside their fields. The end result is a current, concise, reference that puts the essential results on inequalities within easy reach. A Dictionary of Inequalities carries the beauty and attraction of the best and most successful dictionaries: on looking up a given item, the reader is likely to be intrigued and led by interest to others.
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities. This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits. Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.
From atom bombs to rebounding slinkies, open your eyes to the mathematical magic in the everyday. Mathematics isn't just for academics and scientists, a fact meteorologist and blogger Peter Lynch has spent the past several years proving through his Irish Times newspaper column and blog, That's Maths.Here, he shows how maths is all around us, with chapters on the beautiful equations behind designing a good concert venue, predicting the stock market and modelling the atom bomb, as well as playful meditations on everything from coin-stacking to cartography. If you left school thinking maths was boring, think again!
A concise outline of the basic facts of potential theory and quasiconformal mappings makes this book an ideal introduction for non-experts who want to get an idea of applications of potential theory and geometric function theory in various fields of construction analysis.
Adding new results that have appeared in the last 15 years, Dictionary of Inequalities, Second Edition provides an easy way for researchers to locate an inequality by name or subject. This edition offers an up-to-date, alphabetical listing of each inequality with a short statement of the result, some comments, references to related inequalities, an
Top researchers in optimization and control from around the world gathered in Detroit for the 18th annual IFIP TC7 Conference on Systems Modelling and Optimization held in July 1997. The papers offered in this volume were selected from among the 250 plenary, invited, and contributed works presented at the conference. The editors chose these papers to represent the myriad and diverse range of topics within the field -in theory and applications-and to disseminate important new results. The editors have organized the book into seven sections: Distributed Parameter Systems Modelling Optimal Control and Nonsmoooth Analysis Automotive Optimization and Operations Research Applications · Reliability Each section contains important advances in theoretical development of optimization and control, new results, and discussions of applications. Treatment of numerous and wide- ranging applications-from turbulent flows, European option pricing, and storage location, to wear processes, passive fire protection, and robotics-make this resource important for academic and industrial researchers working in a variety of areas in systems engineering and applied mathematics.
The book treats four mathematical concepts which play a fundamental role in many different areas of mathematics: symbolic sums, recurrence (difference) equations, generating functions, and asymptotic estimates. Their key features, in isolation or in combination, their mastery by paper and pencil or by computer programs, and their applications to problems in pure mathematics or to "real world problems" (e.g. the analysis of algorithms) are studied. The book is intended as an algorithmic supplement to the bestselling "Concrete Mathematics" by Graham, Knuth and Patashnik.
A colorful tour through the intriguing world of mathematics Take a grand tour of the best of modern math, its most elegant solutions, most clever discoveries, most mind-bending propositions, and most impressive personalities. Writing with a light touch while showing the real mathematics, author Peter Schumer introduces you to the history of mathematics, number theory, combinatorics, geometry, graph theory, and "recreational mathematics." Requiring only high school math and a healthy curiosity, Mathematical Journeys helps you explore all those aspects of math that mathematicians themselves find most delightful. You’ll discover brilliant, sometimes quirky and humorous tidbits like how to compute the digits of pi, the Josephus problem, mathematical amusements such as Nim and Wythoff’s game, pizza slicing, and clever twists on rolling dice.
Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.
The intellectual and human story of a mathematical proof that transformed our ideas about mathematics. In 1824 a young Norwegian named Niels Henrik Abel proved conclusively that algebraic equations of the fifth order are not solvable in radicals. In this book Peter Pesic shows what an important event this was in the history of thought. He also presents it as a remarkable human story. Abel was twenty-one when he self-published his proof, and he died five years later, poor and depressed, just before the proof started to receive wide acclaim. Abel's attempts to reach out to the mathematical elite of the day had been spurned, and he was unable to find a position that would allow him to work in peace and marry his fiancé. But Pesic's story begins long before Abel and continues to the present day, for Abel's proof changed how we think about mathematics and its relation to the "real" world. Starting with the Greeks, who invented the idea of mathematical proof, Pesic shows how mathematics found its sources in the real world (the shapes of things, the accounting needs of merchants) and then reached beyond those sources toward something more universal. The Pythagoreans' attempts to deal with irrational numbers foreshadowed the slow emergence of abstract mathematics. Pesic focuses on the contested development of algebra—which even Newton resisted—and the gradual acceptance of the usefulness and perhaps even beauty of abstractions that seem to invoke realities with dimensions outside human experience. Pesic tells this story as a history of ideas, with mathematical details incorporated in boxes. The book also includes a new annotated translation of Abel's original proof.
The Fovea: Structure, Function, Development, and Disease summarizes the current biological knowledge regarding the two types of the vertebrate fovea (and its main structural elements, the Müller cells). This information is then used to explain different aspects of human vision, foveal development, and macular disorders. Sections give an overview of the retinal structure and the different types of retinal glia, survey the structure and function of the primate and non-mammalian fovea types, discuss foveal development—with a focus on the human fovea, cover the roles of Müller cells and astrocytes in the pathogenesis and regeneration of various human macular disorders are described. Using a translational approach, this reference is a valuable text for scientists, clinicians and physicians interested in the fovea. Readers will gain a new understanding of the cellular basics of the fovea, which is the most important part of the eye. - Adopts a translational approach, summarizing the biological knowledge regarding the structure and function of the fovea, the roles of Müller cells in mediating the structural integrity, and function of the fovea - Provides overviews of both basic types of the vertebrate fovea, countering the popular belief that there is only one type of the vertebrate fovea, the human fovea - Thoroughly shows the mechanisms involved in the development of the fovea that explain the rapid improvement of visual acuity in newborns - Explains pathological changes in the foveal structure and function with evaluation pointing toward possible prevention and/or cure
Vehicle, road, sign, and signal lighting are provided to enable drivers to reach their destinations quickly and safely. However, the attention given to how these forms of lighting function is likely to change as new technology is introduced and understanding of ergonomics and human factors improves. Lighting for Driving: Roads, Vehicle, Signs and Signals, Second Edition shows the crucial role lighting plays in road safety and examines how it could be used more effectively. With light-emitting diodes (LEDs) becoming the lighting source of choice for transport planners and vehicle designers, this book integrates information on road lighting, vehicle lighting, signs, and signals in one handy volume. International in scope and updated for this new edition, this book features lighting examples from the USA, the UK, France, Germany, The Netherlands, Denmark, Sweden, Norway, Finland, Japan, Australia, and New Zealand. Lighting in common vehicle types including cars, vans, trucks, and motorcycles is covered as well as the visibility of pedestrians and cyclists to drivers. Coverage extends to road lighting, traffic markings, vehicle designs, and internal lighting and weather conditions. Now fully updated, a final chapter looks at the future of lighting in relation to driving. The book will help the reader to understand how lighting systems on roads and vehicles work by explaining the thinking and scientific reasoning behind various forms of lighting and analyzing their contribution to the driver’s understanding of real and potential road hazards. This book will be an ideal read for ergonomists and engineers engaged in transport and road engineering, transport planners, civil engineers, vehicle designers, and electrical engineers.
Fundamental arithmetic operations support virtually all of the engineering, scientific, and financial computations required for practical applications, from cryptography, to financial planning, to rocket science. This comprehensive reference provides researchers with the thorough understanding of number representations that is a necessary foundation for designing efficient arithmetic algorithms. Using the elementary foundations of radix number systems as a basis for arithmetic, the authors develop and compare alternative algorithms for the fundamental operations of addition, multiplication, division, and square root with precisely defined roundings. Various finite precision number systems are investigated, with the focus on comparative analysis of practically efficient algorithms for closed arithmetic operations over these systems. Each chapter begins with an introduction to its contents and ends with bibliographic notes and an extensive bibliography. The book may also be used for graduate teaching: problems and exercises are scattered throughout the text and a solutions manual is available for instructors.
The availability of electric lighting has changed the lives of people the world over, yet as a major user of electricity it has come under increasing scrutiny in recent years. This scrutiny has focused largely on the environmental consequences, with little consideration of the benefits of lighting. Human Factors in Lighting, Third Edition restores some balance to the discussion by examining the ways in which people interact with lighting. These interactions influence the ability to perform visual tasks; the perception of people, objects, and spaces; human comfort and behavior; as well as human health and safety. It is only by understanding how to use light to achieve these ends that lighting can be provided effectively and efficiently to the benefit of all. See What’s New in the Third Edition: New chapters on the non-image-forming system, lighting for pedestrians, light pollution, and lighting and electricity use Revision of all other chapters to update them to take into account the advances that have been made in our understanding of the effects of light on people over the last decade Integration of the combined effects of light via the visual and non-image-forming systems on performance and perception The book covers both the visual and the non-visual effects of light on people as well as the benefits of lighting and the costs it imposes on the environment. It details the consequences of exposure to lighting or lighting technology and the role of exposure to light on such basic functions of the body as circadian rhythms. The author combines information from many different sources and integrates them into a coherent overview of lighting practice that can be used to develop better lighting solutions at a lower environmental cost.
A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.
This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
A solid introduction to applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented such that graduates and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory, with many of the topics presented in a novel way, emphasising explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
This text offers an excellent introduction to the mathematical theory of wavelets for senior undergraduate students. Despite the fact that this theory is intrinsically advanced, the author's elementary approach makes it accessible at the undergraduate level. Beginning with thorough accounts of inner product spaces and Hilbert spaces, the book then shifts its focus to wavelets specifically, starting with the Haar wavelet, broadening to wavelets in general, and culminating in the construction of the Daubechies wavelets. All of this is done using only elementary methods, bypassing the use of the Fourier integral transform. Arguments using the Fourier transform are introduced in the final chapter, and this less elementary approach is used to outline a second and quite different construction of the Daubechies wavelets. The main text of the book is supplemented by more than 200 exercises ranging in difficulty and complexity.
The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.
Do you want to know what inherited defect causes thalassaemia? Do you understand the significance of "resistance" when applied to microbiology? Can you say what a "frozen section" really is? The Dictionary of Biomedical Sciences answers all these questions and more. This informative, practical guide contains over 8000 entries that define all the basic principles of biomedical sciences, together with a wealth of other information. It reflects current practice in all aspects of biomedical science and includes variant spellings, punctuation, abbreviations, acronyms, symbols, nomenclature, prefixes and suffixes and covers the field in a concise, clear and authoritative manner.
Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Zelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime number theorem. Four brief appendices provide all necessary background in complex analysis beyond the standard first year graduate course. Lovers of analysis and beautiful proofs will read and reread this slim volume with pleasure and profit.
This book provides a concise introduction to convex duality in financial mathematics. Convex duality plays an essential role in dealing with financial problems and involves maximizing concave utility functions and minimizing convex risk measures. Recently, convex and generalized convex dualities have shown to be crucial in the process of the dynamic hedging of contingent claims. Common underlying principles and connections between different perspectives are developed; results are illustrated through graphs and explained heuristically. This book can be used as a reference and is aimed toward graduate students, researchers and practitioners in mathematics, finance, economics, and optimization. Topics include: Markowitz portfolio theory, growth portfolio theory, fundamental theorem of asset pricing emphasizing the duality between utility optimization and pricing by martingale measures, risk measures and its dual representation, hedging and super-hedging and its relationship with linear programming duality and the duality relationship in dynamic hedging of contingent claims
Enumerative combinatorics, in its algebraic and analytic forms, is vital to many areas of mathematics, from model theory to statistical mechanics. This book, which stems from many years' experience of teaching, invites students into the subject and prepares them for more advanced texts. It is suitable as a class text or for individual study. The author provides proofs for many of the theorems to show the range of techniques available, and uses examples to link enumerative combinatorics to other areas of study. The main section of the book introduces the key tools of the subject (generating functions and recurrence relations), which are then used to study the most important combinatorial objects, namely subsets, partitions, and permutations of a set. Later chapters deal with more specialised topics, including permanents, SDRs, group actions and the Redfield–Pólya theory of cycle indices, Möbius inversion, the Tutte polynomial, and species.
Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialise in Riemannian geometry. Instead of variational techniques, the author uses a unique approach, emphasising distance functions and special co-ordinate systems. He also uses standard calculus with some techniques from differential equations to provide a more elementary route. Many chapters contain material typically found in specialised texts, never before published in a single source. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research - including sections on convergence and compactness of families of manifolds. Thus, this book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.
H.S.M. Coxeter is one of the world's best-known mathematicians who wrote several papers and books on geometry, algebra and topology, and finite mathematics. This book is being published in conjunction with the 50th anniversary of the Canadian Mathematical Society and it is a collection of 26 papers written by Dr. Coxeter.
Although many books have been published on various aspects of human, animal, and plant parasitology, as well as the public health problems associated with parasites, none to date has offered a comprehensive glossary for those confronted with the discipline's exceptionally extensive terminology. To meet this need requires a dedicated text that can h
This textbook offers undergraduates a self-contained introduction to advanced topics not covered in a standard calculus sequence. The author’s enthusiastic and engaging style makes this material, which typically requires a substantial amount of study, accessible to students with minimal prerequisites. Readers will gain a broad knowledge of the area, with approaches based on those found in recent literature, as well as historical remarks that deepen the exposition. Specific topics covered include the binomial theorem, the harmonic series, Euler's constant, geometric probability, and much more. Over the fifteen chapters, readers will discover the elegance of calculus and the pivotal role it plays within mathematics. A Compact Capstone Course in Classical Calculus is ideal for exploring interesting topics in mathematics beyond the standard calculus sequence, particularly for undergraduates who may not be taking more advanced math courses. It would also serve as a useful supplement for a calculus course and a valuable resource for self-study. Readers are expected to have completed two one-semester college calculus courses.
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.
By considering vehicle, signal, and road lighting as integrated means of communication, this unique authoritative work explains the thinking and scientific reasoning behind various forms of lighting and analyzes their contribution to the driver's understanding of real and potential road hazards. Attention is also given to how these forms of lighting are likely to evolve in response to the development of new technology and an improved understanding of ergonomics.
Examining the basic principles in real analysis and their applications, this text provides a self-contained resource for graduate and advanced undergraduate courses. It contains independent chapters aimed at various fields of application, enhanced by highly advanced graphics and results explained and supplemented with practical and theoretical exercises. The presentation of the book is meant to provide natural connections to classical fields of applications such as Fourier analysis or statistics. However, the book also covers modern areas of research, including new and seminal results in the area of functional analysis.
This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
To understand the output from a geographic information system, one must understand the quality of the data that is entered into the system, the algorithms driving the data processing, and the limitations of the graphic displays. Introduction to Mathematical Techniques Used in GIS explains to nonmathematicians the fundamentals that support the manipulation and display of geographic information. It focuses on basic mathematical techniques, building upon a series of steps that enable a deeper understanding of the complex forms of manipulation that arise in the handling of spatially related data. The book moves rapidly through a wide range of data transformations, outlining the techniques involved. Many are precise, building logically on underlying assumptions. Others are based upon statistical analysis and the pursuit of the optimum rather than the perfect and definite solution. By understanding the mathematics behind the gathering, processing, and display of information, GIS professionals can advise others on the integrity of results, the quality of the information, and the safety of using it.
The first edition of this book was reviewed in 1982 as "the most extensive treatment of Pade approximants actually available." This second edition has been thoroughly updated, with a substantial new chapter on multiseries approximants. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, and computational methods. This succinct and straightforward treatment will appeal to scientists, engineers, and mathematicians alike.
Mathematics has a rich history from cultures around the world, which can extend and enrich the appreciation and learning of mathematical concepts. This book provides inspiration for mathematics educators by exploring the development of mathematical concepts from historical and cultural perspectives. It will also be of interest to general readers with an interest in mathematics. Each chapter uses original historical material to introduce a mathematical concept that is then explored through new and unusual perspectives. The book presents several new mathematical “discoveries and inventions”, and offers a re-interpretation of traditional approaches to a range of mathematical problems, doing so in a rigorous way. Topics discussed here include numeracy, the abacus, Mesopotamian mathematics, public-key cryptography, Pythagoras’ theorem, the holistic nature of trigonometry, and an introduction to integral calculus, among many others. Throughout is reflected the author’s enthusiastic style of teaching and his entertaining approach to mathematics, serving to highlight active engagement with significant mathematical problems and hands-on modelling to build deep understanding of the concepts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.