The authors have provided all the elements required for complete understanding of the basic concepts in heat recovery and water minimization in chemical and related processes, and followed these with carefully selected and developed problems and solutions in order to ensure that the concepts delivered can be applied." Simon Perry, The University of Manchester. This graduate textbook covers fundamentals of the key areas of Process Integration and Intensification for intra-process heat recovery (Heat Integration), inter-process heat recovery and cogeneration (Total Site) as well as water conservation. Step by step working sessions are illustrated for deeper understanding of the taught materials. The textbook also provides a wealth of pointers as well as further information for readers to acquire more extensive materials on the diverse industrial applications and the latest development trends in Process Integration and Intensification. It is addressed to graduate students as well as professionals to help the effectively application of Process Integration and Intensification in plant design and operation.
This book provides a thorough guidance on maximizing the performance of utility systems in terms of sustainability. It covers general structure, typical components and efficiency trends, and applications such as top-level analysis for steam pricing and selection of processes for improved heat integration. Examples are provided to illustrate the discussed models and methods to give sufficient learning experience for the reader.
Industrial regions consume large amounts of energy. A lot of research effort is targeted at improving energy efficiency. Heat recovery on Total Site level can provide a considerably high potential for energy saving for industrial areas. It offers opportunities for heat recovery and cogeneration in addition to individual processes. This work deals with estimation of capital cost for power co-generation, evaluating the potential steam turbine placement for various steam pressure levels. The methodology uses the basic principles of Total Site Integration and adds estimation of capital cost for steam turbines with different capacity, inlet and outlet of steam pressure. It also allows evaluating the trade-off between capital cost and energy consumption for the Total Site Integration.
Industrial regions consume large amounts of energy. A lot of research effort is targeted at improving energy efficiency. Heat recovery on Total Site level can provide a considerably high potential for energy saving for industrial areas. It offers opportunities for heat recovery and cogeneration in addition to individual processes. This work deals with estimation of capital cost for power co-generation, evaluating the potential steam turbine placement for various steam pressure levels. The methodology uses the basic principles of Total Site Integration and adds estimation of capital cost for steam turbines with different capacity, inlet and outlet of steam pressure. It also allows evaluating the trade-off between capital cost and energy consumption for the Total Site Integration.
The authors have provided all the elements required for complete understanding of the basic concepts in heat recovery and water minimization in chemical and related processes, and followed these with carefully selected and developed problems and solutions in order to ensure that the concepts delivered can be applied." Simon Perry, The University of Manchester. This graduate textbook covers fundamentals of the key areas of Process Integration and Intensification for intra-process heat recovery (Heat Integration), inter-process heat recovery and cogeneration (Total Site) as well as water conservation. Step by step working sessions are illustrated for deeper understanding of the taught materials. The textbook also provides a wealth of pointers as well as further information for readers to acquire more extensive materials on the diverse industrial applications and the latest development trends in Process Integration and Intensification. It is addressed to graduate students as well as professionals to help the effectively application of Process Integration and Intensification in plant design and operation.
In its second edition, Sustainable Process Integration and Intensification continues the presentation of fundamentals of key areas of both fields. Thoroughly updated and extended to include the latest developments, the reader also finds illustrated working sessions for deeper understanding of the taught materials.The book is addressed to graduate students as well as professionals to help the effectively application in plant design and operation.
This book provides a thorough guidance on maximizing the performance of utility systems in terms of sustainability. It covers general structure, typical components and efficiency trends, and applications such as top-level analysis for steam pricing and selection of processes for improved heat integration. Examples are provided to illustrate the discussed models and methods to give sufficient learning experience for the reader.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.