This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
This book guides readers (astronomers, physicists, and university students) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific endeavor to find the cosmological model best describing the universe of galaxies, its geometry, size, age, and matter composition. The authors draw on their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character. These highlighted items are: Ideosyncratic features of the “cosmic laboratory”, Malmquist bias in the determination of cosmic distances, Theory of gravitation as a cornerstone of cosmological models, Crucial tests for checking the reality of space expansion, Methods of analyzing the structures of the universe as mapped by galaxies, Usefulness of fractals as a model to describe the large-scale structure and new cosmological physics inherent in the Friedmann world model.
Regarding his discoveries, Sir Isaac Newton famously said, "If I have seen further it is by standing upon the shoulders of giants." The Evolving Universe and the Origin of Life describes, complete with fascinating biographical details of the thinkers involved, a history of the universe as interpreted by the expanding body of knowledge of humankind. From subatomic particles to the protein chains that form life, and expanding in scale to the entire universe, this book covers the science that explains how we came to be. This book contains a great breadth of knowledge, from astronomy and physics to chemistry and biology. The second edition brings this story up to date, chronicling scientific achievements in recent years in such fields of research as cosmology, the large-scale architecture of the universe, black holes, exoplanets, and the search for extraterrestrial life. With over 250 figures, this is a non-technical, easy-to-read textbook at an introductory college level that is ideal for anyone interested in science as well as its history.
In a simple manner, explains the frontiers of astronomy, how fractals appear in cosmic physics, offers a personal view of the history of the idea of self-similarity and of cosmological principles and presents the debate which illustrates how new concepts and deeper observations reveal unexpected aspects of Nature.
Regarding his discoveries, Sir Isaac Newton famously said, "If I have seen further it is by standing upon the shoulders of giants." The Evolving Universe and the Origin of Life describes, complete with fascinating biographical details of the thinkers involved, a history of the universe as interpreted by the expanding body of knowledge of humankind. From subatomic particles to the protein chains that form life, and expanding in scale to the entire universe, this book covers the science that explains how we came to be. This book contains a great breadth of knowledge, from astronomy and physics to chemistry and biology. The second edition brings this story up to date, chronicling scientific achievements in recent years in such fields of research as cosmology, the large-scale architecture of the universe, black holes, exoplanets, and the search for extraterrestrial life. With over 250 figures, this is a non-technical, easy-to-read textbook at an introductory college level that is ideal for anyone interested in science as well as its history.
This book guides readers (astronomers, physicists, and university students) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific endeavor to find the cosmological model best describing the universe of galaxies, its geometry, size, age, and matter composition. The authors draw on their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character. These highlighted items are: Ideosyncratic features of the “cosmic laboratory”, Malmquist bias in the determination of cosmic distances, Theory of gravitation as a cornerstone of cosmological models, Crucial tests for checking the reality of space expansion, Methods of analyzing the structures of the universe as mapped by galaxies, Usefulness of fractals as a model to describe the large-scale structure and new cosmological physics inherent in the Friedmann world model.
This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
In a simple manner, explains the frontiers of astronomy, how fractals appear in cosmic physics, offers a personal view of the history of the idea of self-similarity and of cosmological principles and presents the debate which illustrates how new concepts and deeper observations reveal unexpected aspects of Nature.
Regarding his discoveries, Sir Isaac Newton famously said, "If I have seen further it is by standing upon the shoulders of giants." The Evolving Universe and the Origin of Life describes, complete with fascinating biographical details of the thinkers involved, a history of the universe as interpreted by the expanding body of knowledge of humankind. From subatomic particles to the protein chains that form life, and expanding in scale to the entire universe, this book covers the science that explains how we came to be. This book contains a great breadth of knowledge, from astronomy and physics to chemistry and biology. The second edition brings this story up to date, chronicling scientific achievements in recent years in such fields of research as cosmology, the large-scale architecture of the universe, black holes, exoplanets, and the search for extraterrestrial life. With over 250 figures, this is a non-technical, easy-to-read textbook at an introductory college level that is ideal for anyone interested in science as well as its history.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.