This is the first detailed and comprehensive account of the theory and practice of high performance chelation ion chromatography (HPCIC) for the trace determination of metals.
3D printing has rapidly established itself as an essential enabling technology within research and industrial chemistry laboratories. Since the early 2000s, when the first research papers applying this technique began to emerge, the uptake by the chemistry community has been both diverse and extraordinary, and there is little doubt that this fascinating technology will continue to have a major impact upon the chemical sciences going forward. This book provides a timely and extensive review of the reported applications of 3D Printing techniques across all fields of chemical science. Describing, comparing, and contrasting the capabilities of all the current 3D printing technologies, this book provides both background information and reader inspiration, to enable users to fully exploit this developing technology further to advance their research, materials and products. It will be of interest across the chemical sciences in research and industrial laboratories, for chemists and engineers alike, as well as the wider science community.
This volume is a collection of invited talks, oral contributions and poster contributions devoted to advances in gamma-ray spectroscopy of various capture reactions. In agreement with the trend of previous meetings in the series, the symposium paid special attention to theoretical and experimental studies of nuclear structure at low energies and to nuclear astrophysics. Among the other topics covered are: statistical properties of nuclei and other quantum many-body systems, fundamental physics, nuclear data, practical application of capture reactions, and new techniques and facilities for capture gamma-ray spectroscopy. Contents: Nuclear Structure; Nuclear Reactions; Nuclear Astrophysics; Statistical Properties of Nuclei; Experimental Facilities; Nuclear Data; Applications; Fundamental Physics. Readership: Graduate students and researchers in nuclear physics.
The book is devoted to an important aspect of pharmacology and pharmaceutical chemistry, i.e. the significance of stereoisomerism of drugs for their biological effect from the point of view of their pharmacokinetics, pharmacodynamics and toxicology. The authors review the landmarks in the development of stereochemistry and stereopharmacology. Present-day IUPAC terminology is discussed; general issues of stereoisomerism are considered including separation of racemic mixtures and asymmetric synthesis of isomers, methods of quantifying the isomers of a drug in biological material. The authors put special emphasis on general problems of the influence of stereoisomerism on pharmacological and adverse effects of drugs. A classification of drugs based on stereochemical properties of their isomers is proposed. Possibilities of interaction of stereoisomers in racemic mixtures are discussed. A considerable portion of the book is devoted to pharmacological action of the main groups of drugs whose structure includes asymmetric atoms (that is, drugs with several isomers). Detailed attention is paid to advisability of developing single isomer drugs and to the specifics of their study at the stage of preclinical and clinical trials.
This work is the first systematic study of how monumental buildings were constructed in medieval Russia. It deals specifically with ecclesiastical architecture, but also discusses such secular architecture, palaces or towers. In scope the book covers the territory of the Kievan state and the principalities that succeeded it, from the 10th century to the 13th century. Pavel Aleksandrovich Rappoport was the author of many of the standard works on the architectural history of Russia, whether monumental, military or domestic. He was also a leading archaeologist. In Building the Churches of Kievan Russia his aim is to investigate how people went about building them: from brickmaking and lime-firing to the roofing and decoration, from how the churches were laid out to how much brickwork was laid in a day. This book treats all these processes as one integrated and interconnected procedure. The detailed analysis enables Rappoport to identify the work of particular teams of builders, even individual masters, and to follow their progress from one site to another, and one town to a second. Similarly, he documents how the Byzantine styles and methods of church building, imported into Russia after its conversion in 989, were gradually adapted to meet the needs of local circumstances and climate. This study will be of direct relevance to those concerned with the architecture and the Church of pre-Mongol Russia, as well as its social history. The investigation of the earliest churches, furthermore, represents the sole extended discussion of Byzantine building practices. In terms of methodology, the book will be of interest to all architectural historians and archaeologists concerned with the Middle Ages, and makes accessible in English material that has hitherto only been available in Russian.
This is the first book in world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
3D printing has rapidly established itself as an essential enabling technology within research and industrial chemistry laboratories. Since the early 2000s, when the first research papers applying this technique began to emerge, the uptake by the chemistry community has been both diverse and extraordinary, and there is little doubt that this fascinating technology will continue to have a major impact upon the chemical sciences going forward. This book provides a timely and extensive review of the reported applications of 3D Printing techniques across all fields of chemical science. Describing, comparing, and contrasting the capabilities of all the current 3D printing technologies, this book provides both background information and reader inspiration, to enable users to fully exploit this developing technology further to advance their research, materials and products. It will be of interest across the chemical sciences in research and industrial laboratories, for chemists and engineers alike, as well as the wider science community.
This is the first detailed and comprehensive account of the theory and practice of high performance chelation ion chromatography (HPCIC) for the trace determination of metals.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.