This selection of expository essays by Paulo Ribenboim should be of interest to mathematicians from all walks. Ribenboim, a highly praised author of several popular titles, writes each essay in a light and humorous language without secrets, making them thoroughly accessible to everyone with an interest in numbers. This new collection includes essays on Fibonacci numbers, prime numbers, Bernoulli numbers, and historical presentations of the main problems pertaining to elementary number theory, such as Kummers work on Fermat's last theorem.
A deep understanding of prime numbers is one of the great challenges in mathematics. In this new edition, fundamental theorems, challenging open problems, and the most recent computational records are presented in a language without secrets. The impressive wealth of material and references will make this book a favorite companion and a source of inspiration to all readers. Paulo Ribenboim is Professor Emeritus at Queen's University in Canada, Fellow of the Royal Society of Canada, and recipient of the George Pólya Award of the Mathematical Association of America. He is the author of 13 books and more than 150 research articles. From the reviews of the First Edition: Number Theory and mathematics as a whole will benefit from having such an accessible book exposing advanced material. There is no question that this book will succeed in exciting many new people to the beauty and fascination of prime numbers, and will probably bring more young people to research in these areas. (Andrew Granville, Zentralblatt)
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Prime Numbers, Friends Who Give Problems is written as a trialogue, with two persons who are interested in prime numbers asking the author, Papa Paulo, intelligent questions. Starting at a very elementary level, the book advances steadily, covering all important topics of the theory of prime numbers, up to the most famous problems. The humorous conversations and the inclusion of a back-story add to the uniqueness of the book. Concepts and results are also explained with great care, making the book accessible to a wide audience.
Prime Numbers, Friends Who Give Problems is written as a trialogue, with two persons who are interested in prime numbers asking the author, Papa Paulo, intelligent questions. Starting at a very elementary level, the book advances steadily, covering all important topics of the theory of prime numbers, up to the most famous problems. The humorous conversations and the inclusion of a back-story add to the uniqueness of the book. Concepts and results are also explained with great care, making the book accessible to a wide audience.
This two-volume collection contains Paulo Ribenboim’s work on ordered structures and mathematical logic. Two long unpublished papers and a reproduction of his first book on abelian groups are also featured in these volumes. With over 240 publications, including 13 books, Ribenboim is responsible for some of the most influential research in number theory, mathematical logic, and algebraic structures. Together, these volumes include papers on algebraic structures on directed graphs, real algebraic geometry, applications of model theory in collaboration with Lou van dem Dries, and more recent papers with Sibylla Priess-Crampe on mathematical logic programming and Ultrametric spaces. Originally from Brazil, Ribenboim is currently professor emeritus at Queen’s University in Kingston, Ontario. The Ribenboim Prize of the Canadian Number Theory Association is named after him.
In 1995, Andrew Wiles completed a proof of Fermat's Last Theorem. Although this was certainly a great mathematical feat, one shouldn't dismiss earlier attempts made by mathematicians and clever amateurs to solve the problem. In this book, aimed at amateurs curious about the history of the subject, the author restricts his attention exclusively to elementary methods that have produced rich results.
The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.