From the innocence of youth, to the blood curdling realities of war, Hart Goodloe proved through the entirety of his life that the world is larger than one man. His life also gave testament to the idea that if a life is lived correctly, one man can leave an indelible mark on the lives of others. Goodloe is a story of timeless love, breathtaking pain and quiet redemption. From its inception, the novel takes the reader on a journey commencing in the quiet town of Danville, Kentucky in the late 1800s and follows a course through the bloody fields of France during WWI, the Great Depression and small town American life. Following the life of a surgeon and a humanist, Goodloe weaves an intricate tale colored by the life of his wife, Hattie and a bond of love that proved eternal.
Introduction to abstract interpretation, with examples of applications to the semantics, specification, verification, and static analysis of computer programs. Formal methods are mathematically rigorous techniques for the specification, development, manipulation, and verification of safe, robust, and secure software and hardware systems. Abstract interpretation is a unifying theory of formal methods that proposes a general methodology for proving the correctness of computing systems, based on their semantics. The concepts of abstract interpretation underlie such software tools as compilers, type systems, and security protocol analyzers. This book provides an introduction to the theory and practice of abstract interpretation, offering examples of applications to semantics, specification, verification, and static analysis of programming languages with emphasis on calculational design. The book covers all necessary computer science and mathematical concepts--including most of the logic, order, linear, fixpoint, and discrete mathematics frequently used in computer science--in separate chapters before they are used in the text. Each chapter offers exercises and selected solutions. Chapter topics include syntax, parsing, trace semantics, properties and their abstraction, fixpoints and their abstractions, reachability semantics, abstract domain and abstract interpreter, specification and verification, effective fixpoint approximation, relational static analysis, and symbolic static analysis. The main applications covered include program semantics, program specification and verification, program dynamic and static analysis of numerical properties and of such symbolic properties as dataflow analysis, software model checking, pointer analysis, dependency, and typing (both for forward and backward analysis), and their combinations. Principles of Abstract Interpretation is suitable for classroom use at the graduate level and as a reference for researchers and practitioners.
This book is an extension of one author's doctoral thesis on the false path problem. The work was begun with the idea of systematizing the various solutions to the false path problem that had been proposed in the literature, with a view to determining the computational expense of each versus the gain in accuracy. However, it became clear that some of the proposed approaches in the literature were wrong in that they under estimated the critical delay of some circuits under reasonable conditions. Further, some other approaches were vague and so of questionable accu racy. The focus of the research therefore shifted to establishing a theory (the viability theory) and algorithms which could be guaranteed correct, and then using this theory to justify (or not) existing approaches. Our quest was successful enough to justify presenting the full details in a book. After it was discovered that some existing approaches were wrong, it became apparent that the root of the difficulties lay in the attempts to balance computational efficiency and accuracy by separating the tempo ral and logical (or functional) behaviour of combinational circuits. This separation is the fruit of several unstated assumptions; first, that one can ignore the logical relationships of wires in a network when considering timing behaviour, and, second, that one can ignore timing considerations when attempting to discover the values of wires in a circuit.
Endothelial dysfunction is now regarded as an early marker of vascular disease and therefore an important target for therapeutic intervention and discovery of novel treatments. Ideal for both basic and clinical scientists, whether in industry or academia, and physicians, Vascular Endothelium in Human Physiology and Pathophysiology provides an up-to-date review of the vascular functions of the endothelium and its role in key areas of cardiovascular disease. It focuses on evidence from studies in humans.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.