Light Emitting Diodes (LEDs) are no longer confined to use in commercial signage and have now moved firmly, and with unquestioned advantages, into the field of commercial and domestic lighting. This development was prompted in the late 1980s by the invention of the blue LED, a wavelength that had previously been missing from the available LED spectrum and which opened the way to providing white light. Since that point, LED performance (including energy efficiency) has improved dramatically, and now compares with the performance of fluorescent lights - and there remain further performance improvements yet to be delivered. The book begins with the principles of LED lighting, then focuses on issues and challenges. Chapters are devoted to key steps in LED manufacturing: substrate, epitaxy, process and packaging. Photoelectric characterization of LEDs, Lighting with LEDs and the imposition of a certain level of color quality, are the subject of later chapters, and finally there is a detailed discussion of the emergence of OLEDs, or organic LEDs, which have specific capabilities of immediate interest and importance in this field.
With increasingly low-cost and power-efficient RF electronics demanded by today's wireless communication systems, it is essential to keep up to speed with new developments. This book presents key advances in the field that you need to know about and emerging patterns in large-signal measurement techniques, modeling and nonlinear circuit design theory supported by practical examples. Topics covered include: • Novel large-signal measurement techniques that have become available with the introduction of nonlinear vector network analyzers (NVNA), such as the LSNA, PNA-X and SWAP • Direct extraction of device models from large-signal RF dynamic loadlines • Characterization of memory effects (self-heating, traps) with pulsed RF measurements • Interactive design of power-efficient amplifiers (PA) and oscillators using ultra-fast multi-harmonic active load-pull • Volterra and poly-harmonic distortion (X-parameters) behavioral modeling • Oscillator phase noise theory • Balancing, modeling and poly-harmonic linearization of broadband RFIC modulators • Development of a frequency selective predistorter to linearize PAs
Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented –the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing. - Provides the state-of-the-art in IoT Data Stream Processing, Semantic Data Enrichment, Reasoning and Knowledge - Covers extraction (Anomaly Detection) - Illustrates new, scalable and reliable processing techniques based on IoT stream technologies - Offers applications to new, real-time anomaly detection scenarios in the health domain
Jasmine finds solace in her world of flowers on her 4th floor apartment. She dreams of the day she would leave the apartment for Singapore. But all her plans are sidelined the day she meets the mysterious Remy. Remy is on the run from himself. Desperately trying to find meaning in his life, he hides in the flat complex called Rifle Range. There he befriends Jasmine and immediately takes interest in her. Jasmine, the happy-go-lucky girl is the answer to his problems. It is a friendship that helps both of them cope with their tortured past and their need to love and be loved. Ultimately Remy’s secret threatens their blossoming love and hopes of a life together. Could the strengths of their friendship and love overcome the secret that Remy hides?
This book focuses on broadband power amplifier design for wireless communication. Nonlinear model embedding is described as a powerful tool for designing broadband continuous Class-J and continuous class F power amplifiers. The authors also discuss various techniques for extending bandwidth of load modulation based power amplifiers, such as Doherty power amplifier and Chireix outphasing amplifiers. The book also covers recent trends on digital as well as analog techniques to enhance bandwidth and linearity in wireless transmitters. Presents latest trends in designing broadband power amplifiers; Covers latest techniques for using nonlinear model embedding in designing power amplifiers based on waveform engineering; Describes the latest techniques for extending bandwidth of load modulation based power amplifiers such as Doherty power amplifier and Chireix outphasing amplifiers; Includes coverage of hybrid analog/digital predistortion as wideband solution for wireless transmitters; Discusses recent trends on on-chip power amplifier design with GaN /GaAs MMICs for high frequency applications.
This ground-breaking study explores the structure and literary figures in the biblical Hebrew poetry of the Song of Songs. These figures include simile, metaphor, paronomasia, parallelism, sensory cluster, fertility language - flowers, spices, and plants as well as animals and images of wealth - and many other literary devices, delineated but not limited to how they also appear in classical literature as defined by Aristotle, Quintilian, and others. This biblical poetry is also compared to the Greek poetry of Sappho and Egyptian love poetry as well as to the Ramayana and the Kamasutra. The Song of Songs is discreetly yet firmly interpreted as erotic literature.
This dissertation employs doping to investigate basic gallium nitride (GaN) crystal properties and to solve challenges of the hydride vapour phase epitaxy (HVPE) growth process. Whereas the first chapter is a short introduction to the history of the GaN single crystal growth, the 2nd chapter introduces to current crystal growth techniques, discusses properties of the GaN material system and the resulting influence on the applicable crystal growth techniques. HVPE, as a vapour phase epitaxy crystal growth method will be explained in greater detail, with focus on the used vertical reactor and its capabilities for doping. The 3rd chapter then focusses on point defects in GaN, specifically on intentionally introduced extrinsic point defects used for doping purposes, i.e. to achieve p-type, n-type or semi-insulating behaviour. Different dopants will be reviewed before the diffusion of point defects in a solid will be discussed. The in-situ introduction of iron, manganese, and carbon during crystal growth is employed in chapter 4 to compensate the unintentional doping (UID) of the GaN crystals, and therefore to achieve truly semi-insulating behaviour of the HVPE GaN. However the focus of this chapter lies on the characterisation of the pyroelectric coefficient (p), as semi-insulating properties are a necessary requirement for the applied Sharp-Garn measurement method. The creation of tensile stress due to in-situ silicon doping during GaN crystal growth is the topic of the 5th chapter. The tensile stress generation effect will be reproduced and the strain inside the crystal will be monitored ex-situ employing Raman spectroscopy. The n-type doping is achieved by using a vapour phase doping line and a process is developed to hinder the tensile strain generation effect. The 6th chapter concentrates on the delivery of the doping precursor via a solid state doping line, a newly developed doping method. Similar to chapter 5, the doping line is characterised carefully before the germanium doping is employed to the GaN growth. The focus lies on the homogeneity of the germanium doping and it is compared compared to the silicon doping and the vapour phase doping line. Benefits and drawbacks are discussed in conjunction with the obtained results. The germanium doping via solid state doping line is applied to the HVPE GaN growth process to measure accurately growth process related properties unique to the applied set of GaN growth parameters.
This book provides a largely self-contained account of the main results of convex analysis and optimization in Hilbert space. A concise exposition of related constructive fixed point theory is presented, that allows for a wide range of algorithms to construct solutions to problems in optimization, equilibrium theory, monotone inclusions, variational inequalities, best approximation theory, and convex feasibility. The book is accessible to a broad audience, and reaches out in particular to applied scientists and engineers, to whom these tools have become indispensable.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.