The third edition of Measurement and Data Analysis for Engineering and Science provides an up-to-date approach to presenting the methods of experimentation in science and engineering. Widely adopted by colleges and universities within the U.S. and abroad, this edition has been developed as a modular work to make it more adaptable to different approaches from various schools. This text details current methods and highlights the six fundamental tools required for implementation: planning an experiment, identifying measurement system components, assessing measurement system component performance, setting signal sampling conditions, analyzing experimental results, and reporting experimental results. What’s New in the Third Edition: This latest edition includes a new chapter order that presents a logical sequence of topics in experimentation, from the planning of an experiment to the reporting of the experimental results. It adds a new chapter on sensors and transducers that describes approximately 50 different sensors commonly used in engineering, presents uncertainty analysis in two separate chapters, and provides a problem topic summary in each chapter. New topics include smart measurement systems, focusing on the Arduino® microcontroller and its use in the wireless transmission of data, and MATLAB® and Simulink® programming for microcontrollers. Further topic additions are on the rejection of data outliers, light radiation, calibrations of sensors, comparison of first-order sensor responses, the voltage divider, determining an appropriate sample period, and planning a successful experiment. Measurement and Data Analysis for Engineering and Science also contains more than 100 solved example problems, over 400 homework problems, and provides over 75 MATLAB® Sidebars with accompanying MATLAB M-files, Arduino codes, and data files available for download.
Measurement and Data Analysis for Engineering and Science, Fourth Edition, provides up-to-date coverage of experimentation methods in science and engineering. This edition adds five new "concept chapters" to introduce major areas of experimentation generally before the topics are treated in detail, to make the text more accessible for undergraduate students. These feature Measurement System Components, Assessing Measurement System Performance, Setting Signal Sampling Conditions, Analyzing Experimental Results, and Reporting Experimental Results. More practical examples, case studies, and a variety of homework problems have been added; and MATLAB and Simulink resources have been updated.
A combination of two texts authored by Patrick Dunn, this set covers sensor technology as well as basic measurement and data analysis subjects, a combination not covered together in other references. Written for junior-level mechanical and aerospace engineering students, the topic coverage allows for flexible approaches to using the combination book in courses. MATLAB® applications are included in all sections of the combination, and concise, applied coverage of sensor technology is offered. Numerous chapter examples and problems are included, with complete solutions available.
Presenting the fundamental tools of experimentation that are currently used by engineers and scientists, Measurement and Data Analysis for Engineering and Science, Second Edition covers the basics of experimentation, hardware of experiments, and methods of data analysis. It also offers historical perspectives throughout. Updating and reorganizing its popular predecessor, this second edition makes the text much easier to follow and enhances the presentation with electronic material. New to the Second Edition Order of chapters now reflects the sequence of topics usually included in an undergraduate course Asterisked sections denote material not typically covered formally during lecture in an introductory undergraduate course More than 150 new problems, bringing the total to over 420 problems Supplementary website that provides unit conversions, learning objectives, review crossword puzzles and solutions, differential equation derivations, laboratory exercise descriptions, MATLAB® sidebars with M-files, and homework data files Thorough and up to date, this edition continues to help students gain a fundamental understanding of the tools of experimentation. It discusses basic concepts related to experiments, measurement system components and responses, data analysis, and effective communication of experimental findings. Ancillary materials for instructors are available on a CD-ROM and a solutions manual is available for qualifying instructors. More data available on www.nd.edu/~pdunn/www.text/measurements.html
It's as big as the Empire State Building, a massive floating fortress at the throbbing heart of a U.S. Navy Carrier Battle Group. Its supersonic aircraft can level entire cities at a stroke. Its surveillance gear can track every target within thousands of square miles--in the air, on the surface, and under the sea. Its crew of six thousand works night and day to keep this awesome military machine at peak performance. It's a Nimitz-Class nuclear carrier, the most powerful weapons system on the planet. Nothing can touch it. So when the first stunned messages say only that the Thomas Jefferson has disappeared, the Navy reacts with disbelief. But as her battered escorts report in, the truth becomes inescapable: a Nimitz-Class carrier has been claimed by nuclear catastrophe--the mightiest military unit on earth, vaporized without warning by an accidental detonation of unimaginable power. No other explanation is possible. But as Navy maverick Bill Baldridge begins to investigate the disaster that claimed his idolized brother's life, another chilling alternative begins to emerge from the high-tech web of fleeting sonar contacts and elusive radar blips. It points to a rogue submarine commanded by a world-class undersea warrior with the steely nerve and cunning of a master spy. Suddenly it's up to Bill Baldridge to track down this shadowy nuclear terrorist, who has already turned America's ultimate weapon into the biggest sitting duck in history--and who still has another nuclear-tipped torpedo in his tubes. He's already proved he has the icy ruthlessness to incinerate six thousand sailors without a qualm. What will he do for an encore? In these pages the modern military springs to life, form the Pentagon's tense conferences to the screaming flight deck of a giant carrier to the silent conning tower of an attack sub on full alert. But as Bill Baldridge races against time to pursue the nation's most deadly enemy, we are forced to ask ourselves serious real-life questions: Have defense budget cuts jeopardized our national security? Are we prepared to defend ourselves against naval terrorist? How safe are we? Nimitz Class is a world-class techno-thriller with a plot as riveting as Hunt for Red October--and an explosive twist out of tomorrow's headlines. Today it's a novel. Tomorrow it might be the news.
Fundamentals of Sensors for Engineering and Science is a practical analysis of sensors and measurement, designed to help readers make informed decisions when selecting an appropriate sensor for a given application. Spurred by a growing demand for information on the evolution of modern sensors, this book evaluates current applications to illustrate their wide range of uses, as well as the many ways they can be classified. Emphasizing the underlying physics involved, author Patrick Dunn reviews the sensors commonly used in engineering and science. He also covers the sensors of the human body, as well as biomimetic sensors used to simulate human functions. The book organizes and describes contemporary examples of manmade sensors based on their core physical principles. Fundamentals—including scaling considerations involved in micro- and nano-sensor development and uncertainty—are introduced at the beginning of the text. A companion to the popular Measurement and Data Analysis for Engineering and Science, Second Edition, this book will benefit instructors, industry professionals, and anyone else with an interest in this burgeoning field. Clarifying the primary role and key characteristics of sensors in engineering and science, this text includes a wealth of examples and chapter problems, and it also provides online links to updated ancillary materials.
Fundamentals of Sensors for Engineering and Science is a practical analysis of sensors and measurement, designed to help readers make informed decisions when selecting an appropriate sensor for a given application. Spurred by a growing demand for information on the evolution of modern sensors, this book evaluates current applications to illustrate their wide range of uses, as well as the many ways they can be classified. Emphasizing the underlying physics involved, author Patrick Dunn reviews the sensors commonly used in engineering and science. He also covers the sensors of the human body, as well as biomimetic sensors used to simulate human functions. The book organizes and describes contemporary examples of manmade sensors based on their core physical principles. Fundamentals—including scaling considerations involved in micro- and nano-sensor development and uncertainty—are introduced at the beginning of the text. A companion to the popular Measurement and Data Analysis for Engineering and Science, Second Edition, this book will benefit instructors, industry professionals, and anyone else with an interest in this burgeoning field. Clarifying the primary role and key characteristics of sensors in engineering and science, this text includes a wealth of examples and chapter problems, and it also provides online links to updated ancillary materials.
*******Text is available as of 5/21/2004!******** Dunn's Measurement and Data Analysis for Engineering & Science places emphasis on the process of experimentation, rather than the products of experimentation. Dunn’s objective is to expose undergraduates and experimentalists to the essential tools of experimentation, to the scientific detail behind these tools, and to the role of experimentation in the scientific process. Guided by worked examples, MATLAB sidebars, and laboratory exercises, the reader builds a strong working knowledge while moving progressively through the text. The first three chapters of the text cover the basics--experimental methods, units & significant figures, technical communications and basic electronics. Hardware issues are then presented, with a focus on measurement systems, and calibration & response. The final chapters deal with data analysis, with an overview of basic probability & statistics, uncertainty analysis, signal characteristics, and digital signal analysis. Following the text chapters, a full laboratory manual, with an introduction and twelve lab experiments, is included. This gives users a chance to put their basic skills to work in actual engineering experiments, which are taken from a variety of engineering subject areas. Throughout the book computer techniques are discussed, and specific MATLAB applications are included, for problem modeling, exploration and solution. MATLAB "sidebars" are used to present MATLAB, and associated M-files are provided on the Web site.
Presenting the fundamental tools of experimentation that are currently used by engineers and scientists, Measurement and Data Analysis for Engineering and Science, Second Edition covers the basics of experimentation, hardware of experiments, and methods of data analysis. It also offers historical perspectives throughout. Updating and reorganizing its popular predecessor, this second edition makes the text much easier to follow and enhances the presentation with electronic material. New to the Second Edition Order of chapters now reflects the sequence of topics usually included in an undergraduate course Asterisked sections denote material not typically covered formally during lecture in an introductory undergraduate course More than 150 new problems, bringing the total to over 420 problems Supplementary website that provides unit conversions, learning objectives, review crossword puzzles and solutions, differential equation derivations, laboratory exercise descriptions, MATLAB® sidebars with M-files, and homework data files Thorough and up to date, this edition continues to help students gain a fundamental understanding of the tools of experimentation. It discusses basic concepts related to experiments, measurement system components and responses, data analysis, and effective communication of experimental findings. Ancillary materials for instructors are available on a CD-ROM and a solutions manual is available for qualifying instructors. More data available on www.nd.edu/~pdunn/www.text/measurements.html
The third edition of Measurement and Data Analysis for Engineering and Science provides an up-to-date approach to presenting the methods of experimentation in science and engineering. Widely adopted by colleges and universities within the U.S. and abroad, this edition has been developed as a modular work to make it more adaptable to different approaches from various schools. This text details current methods and highlights the six fundamental tools required for implementation: planning an experiment, identifying measurement system components, assessing measurement system component performance, setting signal sampling conditions, analyzing experimental results, and reporting experimental results. What’s New in the Third Edition: This latest edition includes a new chapter order that presents a logical sequence of topics in experimentation, from the planning of an experiment to the reporting of the experimental results. It adds a new chapter on sensors and transducers that describes approximately 50 different sensors commonly used in engineering, presents uncertainty analysis in two separate chapters, and provides a problem topic summary in each chapter. New topics include smart measurement systems, focusing on the Arduino® microcontroller and its use in the wireless transmission of data, and MATLAB® and Simulink® programming for microcontrollers. Further topic additions are on the rejection of data outliers, light radiation, calibrations of sensors, comparison of first-order sensor responses, the voltage divider, determining an appropriate sample period, and planning a successful experiment. Measurement and Data Analysis for Engineering and Science also contains more than 100 solved example problems, over 400 homework problems, and provides over 75 MATLAB® Sidebars with accompanying MATLAB M-files, Arduino codes, and data files available for download.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.