Investigations into the zero-temperature phases in various frustrated and random Ising models in a transverse or tunnelling field have caught attention very recently in the context of quantum magnetisation of glasses and other frustrated systems. This book gives a detailed discussion of the various theoretical techniques developed for the study of transverse Ising models and of the results of these studies with regular and random frustration, dilution, randomness, etc. Recent developments in the studies on their (quantum) relaxational dynamics, such as in quantum hysteresis, are also treated. The detailed presentation of original results and the reviews given here are expected to inspire further research in the exciting field of quantum many-body systems with randomness and frustration.
This book discusses the study and analysis of the physical aspects of social systems and models, inspired by the analogy with familiar models of physical systems and possible applications of statistical physics tools. Unlike the traditional analysis of the physics of macroscopic many-body or condensed matter systems, which is now an established and mature subject, the upsurge in the physical analysis and modelling of social systems, which are clearly many-body dynamical systems, is a recent phenomenon. Though the major developments in sociophysics have taken place only recently, the earliest attempts of proposing "Social Physics" as a discipline are more than one and a half centuries old. Various developments in the mainstream physics of condensed matter systems have inspired and induced the recent growth of sociophysical analysis and models. In spite of the tremendous efforts of many scientists in recent years, the subject is still in its infancy and major challenges are yet to be taken up. An introduction to these challenges is the main motivation for this book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.