During the last five years, after the first meeting on OC Quaternionic Structures in Mathematics and PhysicsOCO, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Knhler, hyper-Knhler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Knhler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book. Contents: Hypercomplex Structures on Special Classes of Nilpotent and Solvable Lie Groups (M L Barberis); Twistor Quotients of HyperKnhler Manifolds (R Bielawski); Quaternionic Contact Structures (O Biquard); A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures (V Cortes); Quaternion Knhler Flat Manifolds (I G Dotti); A Canonical HyperKnhler Metric on the Total Space of a Cotangent Bundle (D Kaledin); Special Spinors and Contact Geometry (A Moroianu); Brane Solitons and Hypercomplex Structures (G Papadopoulos); Hypercomplex Geometry (H Pedersen); Examples of HyperKnhler Connections with Torsion (Y S Poon); A New Weight System on Chord Diagrams via HyperKnhler Geometry (J Sawon); Vanishing Theorems for Quaternionic Knhler Manifolds (U Semmelmann & G Weingart); Weakening Holonomy (A Swann); Special Knhler Geometry (A Van Proeyen); Singularities in HyperKnhler Geometry (M Verbitsky); and other papers. Readership: Researchers and graduate students in geometry, topology, mathematical physics and theoretical physics.
Drawing on a wide range of literature and adopting a macroeconomic approach, this book provides a comprehensive overview of the Italian economy during the Renaissance, focusing on the period between 1348, the year of the Black Death, and 1630. The Italian Renaissance played a crucial role in the formation of the modern world, with developments in culture, art, politics, philosophy, and science sitting alongside, and overlapping with, significant changes in production, forms of organization, trades, finance, agriculture, and population. Yet, it is usually argued that splendour in culture coexisted with economic depression and that the modernity of Renaissance culture coincided with an epoch of epidemics, famines, economic crisis, poverty, and destitution. This book examines both faces of the Italian economy during the Renaissance, showing that capital per worker was plentiful and productive capacity and incomes were relatively high. The endemic presence of the plague, curbing population growth, played an important role in this. It is also shown that the organization of production in industry and finance, consumerism, human capital, and mercantile rationality were the forerunners of modern-day capitalism. This book is an invaluable resource for scholars and students of the Renaissance and Italian economic history.
During the last five years, after the first meeting on OC Quaternionic Structures in Mathematics and PhysicsOCO, interest in quaternionic geometry and its applications has continued to increase. Progress has been made in constructing new classes of manifolds with quaternionic structures (quaternionic Knhler, hyper-Knhler, hyper-complex, etc.), studying the differential geometry of special classes of such manifolds and their submanifolds, understanding relations between the quaternionic structure and other differential-geometric structures, and also in physical applications of quaternionic geometry. Some generalizations of classical quaternion-like structures (like HKT structures and hyper-Knhler manifolds with singularities) appeared naturally and were studied. Some of those results are published in this book. Contents: Hypercomplex Structures on Special Classes of Nilpotent and Solvable Lie Groups (M L Barberis); Twistor Quotients of HyperKnhler Manifolds (R Bielawski); Quaternionic Contact Structures (O Biquard); A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures (V Cortes); Quaternion Knhler Flat Manifolds (I G Dotti); A Canonical HyperKnhler Metric on the Total Space of a Cotangent Bundle (D Kaledin); Special Spinors and Contact Geometry (A Moroianu); Brane Solitons and Hypercomplex Structures (G Papadopoulos); Hypercomplex Geometry (H Pedersen); Examples of HyperKnhler Connections with Torsion (Y S Poon); A New Weight System on Chord Diagrams via HyperKnhler Geometry (J Sawon); Vanishing Theorems for Quaternionic Knhler Manifolds (U Semmelmann & G Weingart); Weakening Holonomy (A Swann); Special Knhler Geometry (A Van Proeyen); Singularities in HyperKnhler Geometry (M Verbitsky); and other papers. Readership: Researchers and graduate students in geometry, topology, mathematical physics and theoretical physics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.