The construction of tunnels involves the resolution of various complex technical problems depending on the geological and geological-environmental context in which the work fits. Only a careful analysis of all the geological and geological-environmental issues and a correct reconstruction of the conceptual model can lead to optimal design solutions from all points of view (including financial) and ensure the safety of workers during the construction and users in the operation phase. It was therefore felt that there was a need to collect in one volume the state of current knowledge about: all the geological and environmental issues related to the construction of underground works the different methodologies used for the reconstruction of the conceptual model the different risk typologies that it is possible to encounter or that can arise from tunnel construction, and the most important risk assessment, management and mitigation methodologies that are used in tunneling studies.
Understanding water circulation in rocks represents a very important element to solving many of the problems linked with civil, environmental and mining engineering. This book offers a synthesis of the actual knowledge about the fluid flow in rocks: - from the medium characterization and the structural geological survey to the generation of stereonets; - the evaluation of the hydrogeological parameters using either deterministic or probabilistic methodologies; - the evaluation of the preferential flow direction considering the change of the hydrogeological structures; - the methods and models used to simulate the flows. Three case studies are provided; water circulation and slope instability, hydrogeological risk linked with tunnelling, and hydrogeological risk linked with road construction.
Understanding water circulation in rocks represents a very important element to solving many of the problems linked with civil, environmental and mining engineering. This book offers a synthesis of the actual knowledge about the fluid flow in rocks: - from the medium characterization and the structural geological survey to the generation of stereonets; - the evaluation of the hydrogeological parameters using either deterministic or probabilistic methodologies; - the evaluation of the preferential flow direction considering the change of the hydrogeological structures; - the methods and models used to simulate the flows. Three case studies are provided; water circulation and slope instability, hydrogeological risk linked with tunnelling, and hydrogeological risk linked with road construction.
The construction of tunnels involves the resolution of various complex technical problems depending on the geological and geological-environmental context in which the work fits. Only a careful analysis of all the geological and geological-environmental issues and a correct reconstruction of the conceptual model can lead to optimal design solutions from all points of view (including financial) and ensure the safety of workers during the construction and users in the operation phase. It was therefore felt that there was a need to collect in one volume the state of current knowledge about: all the geological and environmental issues related to the construction of underground works the different methodologies used for the reconstruction of the conceptual model the different risk typologies that it is possible to encounter or that can arise from tunnel construction, and the most important risk assessment, management and mitigation methodologies that are used in tunneling studies.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.