This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.
During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ``Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.
This book contains papers presented at the Workshop on Parallel Processing of Discrete Optimization Problems held at DIMACS in April 1994. The contents cover a wide spectrum of the most recent algorithms and applications in parallel processing of discrete optimization and related problems. Topics include parallel branch and bound algorithms, scalability, load balancing, parallelism and irregular data structures and scheduling task graphs on parallel machines. Applications include parallel algorithms for solving satisfiability problems, location problems, linear programming, quadratic and linear assignment problems. This book would be suitable as a textbook in advanced courses on parallel algorithms and combinatorial optimization.
This volume is based on proceedings held during the DIMACS workshop on Randomization Methods in Algorithm Design in December 1997 at Princeton. The workshop was part of the DIMACS Special Year on Discrete Probability. It served as an interdisciplinary research workshop that brought together a mix of leading theorists, algorithmists and practitioners working in the theory and implementation aspects of algorithms involving randomization. Randomization has played an important role in the design of both sequential and parallel algorithms. The last decade has witnessed tremendous growth in the area of randomized algorithms. During this period, randomized algorithms went from being a tool in computational number theory to finding widespread applications in many problem domains. Major topics covered include randomization techniques for linear and integer programming problems, randomization in the design of approximate algorithms for combinatorial problems, randomization in parallel and distributed algorithms, practical implementation of randomized algorithms, de-randomization issues, and pseudo-random generators. This volume focuses on theory and implementation aspects of algorithms involving randomization. It would be suitable as a graduate or advanced graduate text.
This work contains refereed papers presented at an interdisciplinary scientific meeting attended by a mix of leading biochemists and computer scientists held at DIMACS in March 1995. It describes the development of a variety of new methods which are being developed for attacking the important problem of molecular structure. It is intended for graduate students and researchers in numerical analysis, molecular biology, biochemistry, computer science, engineering, and operations.
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).
This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.
During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ``Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.