This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits. Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings.
Based on a streamlined presentation of the authors’ successful work Linear Systems, this textbook provides an introduction to systems theory with an emphasis on control. Initial chapters present necessary mathematical background material for a fundamental understanding of the dynamical behavior of systems. Each chapter includes helpful chapter descriptions and guidelines for the reader, as well as summaries, notes, references, and exercises at the end. The emphasis throughout is on time-invariant systems, both continuous- and discrete-time.
There are three words that characterize this work: thoroughness, completeness and clarity. The authors are congratulated for taking the time to write an excellent linear systems textbook!" —IEEE Transactions on Automatic Control Linear systems theory plays a broad and fundamental role in electrical, mechanical, chemical and aerospace engineering, communications, and signal processing. A thorough introduction to systems theory with emphasis on control is presented in this self-contained textbook, written for a challenging one-semester graduate course. A solutions manual is available to instructors upon adoption of the text. The book’s flexible coverage and self-contained presentation also make it an excellent reference guide or self-study manual. For a treatment of linear systems that focuses primarily on the time-invariant case using streamlined presentation of the material with less formal and more intuitive proofs, please see the authors’ companion book entitled A Linear Systems Primer.
A graduate-level textbook, Hybrid Dynamical Systems provides an accessible and comprehensive introduction to the theory of hybrid systems. It emphasizes results that are central to a good understanding of the importance and role of such systems. The authors have developed the materials in this book while teaching courses on hybrid systems, cyber-physical systems, and formal methods. This textbook helps students to become familiar with both the major approaches coloring the study of hybrid dynamical systems. The computer science and control systems points of view – emphasizing discrete dynamics and real time, and continuous dynamics with switching, respectively – are each covered in detail. The book shows how the behavior of a system with tightly coupled cyber- (discrete) and physical (continuous) elements can best be understood by a model simultaneously encompassing all the dynamics and their interconnections. The theory presented is of fundamental importance in a wide range of emerging fields from next-generation transportation systems to smart manufacturing.Features of the text include: extensive use of examples to illustrate the main concepts and to provide insights additional to those acquired from the main text; chapter summaries enabling students to assess their progress; end-of-chapter exercises, which test learning as a course proceeds; an instructor’s guide showing how different parts of the book can be exploited for different course requirements; and a solutions manual, freely available for download by instructors adopting the book for their teaching. Access to MATLAB and Stateflow is not required but would be beneficial, especially for exercises in which simulations are a key tool.
Supervisory Control of Discrete Event Systems Using Petri Nets presents a novel approach to its subject. The concepts of supervisory control and discrete event systems are explained, and the background material on general Petri net theory necessary for using the book's control techniques is provided. A large number of examples is used to illustrate the concepts and techniques presented in the text, and there are plenty of references for those interested in additional study or more information on a particular topic. Supervisory Control of Discrete Event Systems Using Petri Nets is intended for graduate students, advanced undergraduates, and practicing engineers who are interested in the control problems of manufacturing, communication and computer networks, chemical process plants, and other high-level control applications. The text is written from an engineering perspective, but it is also appropriate for students of computer science, applied mathematics, or economics. The book contains enough background material to stand alone as an introduction to supervisory control with Petri nets, but it may also be used as a supplemental text in a course on discrete event systems or intelligent autonomous control.
This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates. It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and design of model-based networked systems Parameter identification and adaptive stabilization of systems controlled over networks The MB-NCS approach to decentralized control of distributed systems Model-Based Control of Networked Systems will appeal to researchers, practitioners, and graduate students interested in the control of networked systems, distributed systems, and systems with limited feedback.
A graduate-level textbook, Hybrid Dynamical Systems provides an accessible and comprehensive introduction to the theory of hybrid systems. It emphasizes results that are central to a good understanding of the importance and role of such systems. The authors have developed the materials in this book while teaching courses on hybrid systems, cyber-physical systems, and formal methods. This textbook helps students to become familiar with both the major approaches coloring the study of hybrid dynamical systems. The computer science and control systems points of view – emphasizing discrete dynamics and real time, and continuous dynamics with switching, respectively – are each covered in detail. The book shows how the behavior of a system with tightly coupled cyber- (discrete) and physical (continuous) elements can best be understood by a model simultaneously encompassing all the dynamics and their interconnections. The theory presented is of fundamental importance in a wide range of emerging fields from next-generation transportation systems to smart manufacturing.Features of the text include: extensive use of examples to illustrate the main concepts and to provide insights additional to those acquired from the main text; chapter summaries enabling students to assess their progress; end-of-chapter exercises, which test learning as a course proceeds; an instructor’s guide showing how different parts of the book can be exploited for different course requirements; and a solutions manual, freely available for download by instructors adopting the book for their teaching. Access to MATLAB and Stateflow is not required but would be beneficial, especially for exercises in which simulations are a key tool.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.