The government of the United States today is deeply involved in activities that have significant scientific and technical (S&T) components that are vitally important for economic productivity and technological competitiveness, national security, an improved environment, better health, and many other purposes. Leadership of the government's role in S&T is exercised by fewer than 100 positions, most of them presidentially appointed and Senate confirmed. Yet there is considerable evidence of increasing difficulty in filling and keeping filled these seemingly prestigious positions. This book by a distinguished panel composed mostly of former presidential appointees delves into the reasons these federal S&T-related positions are vacant, identifies the serious consequences, and recommends a series of changes to reduce the hurdles and disincentives posed by the appointment and confirmation process and to make the positions more attractive to top candidates.
The government of the United States today is deeply involved in activities that have significant scientific and technical (S&T) components that are vitally important for economic productivity and technological competitiveness, national security, an improved environment, better health, and many other purposes. Leadership of the government's role in S&T is exercised by fewer than 100 positions, most of them presidentially appointed and Senate confirmed. Yet there is considerable evidence of increasing difficulty in filling and keeping filled these seemingly prestigious positions. This book by a distinguished panel composed mostly of former presidential appointees delves into the reasons these federal S&T-related positions are vacant, identifies the serious consequences, and recommends a series of changes to reduce the hurdles and disincentives posed by the appointment and confirmation process and to make the positions more attractive to top candidates.
The National Science Foundation's National Center for Science and Engineering Statistics (NCSES), one of the nation's principal statistical agencies, is charged to collect, acquire, analyze, report, and disseminate statistical data related to the science and engineering enterprise in the United States and other nations that is relevant and useful to practitioners, researchers, policymakers, and to the public. NCSES data, based primarily on several flagship surveys, have become the major evidence base for American science and technology policy, and the agency is well respected globally for these data. This report assesses and provides guidance on NCSES's approach to measuring the science and engineering workforce population in the United States. It also proposes a framework for measuring the science and engineering workforce in the next decade and beyond, with flexibility to examine emerging issues related to this unique population while at the same time allowing for stability in the estimation of key trends
Volume II of Responsible Science includes background papers and selected institutional reports, policies, and procedures that were used to develop Volume I. Topics discussed include traditions of mentorship in science; data handling practices in the biological sciences; academic policies and standards governing the conduct of research practices; congressional interest in issues of misconduct and integrity in science; the regulatory experience of human subjects research; and the roles of scientific and engineering societies in fostering research integrity. The panel also considers numerous institutional policy statements adopted by research universities and professional societies that address different aspects of misconduct or integrity in science. These statements have been selected to convey the diverse approaches for addressing such matters within research institutions.
As part of its mission to foster high-quality scientific and engineering research, the National Science Foundation (NSF) plans, grants, and administers major awards to universities and other research institutions for national research facilities, multidisciplinary research centers, and other large-scale research projects. Although few in number, less than 100, such projects account for about 30 percent of NSF's annual research budget. This book provides a useful overview of how such projects are planned, reviews proposals for merit, and evaluates ongoing projects for renewal awards. The panel makes a series of recommendations for strengthening major award decisionmaking.
...should help mobilize Government support for the nation's slipping technological and international trade position...." Leonard Silk, The New York Times. A blue-ribbon panel takes a critical look at the state of U.S. leadership in technological innovation and trade.
The U.S. industrial complex and its associated infrastructure are essential to the nation's quality of life, its industrial productivity, international competitiveness, and security. Each component of the infrastructure-such as highways, airports, water supply, waste treatment, energy supply, and power generation-represents a complex system requiring significant investment. Within that infrastructure both the private and government sectors have equipment and facilities that are subject to degradation by corrosion, which significantly reduces the lifetime, reliability, and functionality of structures and equipment, while also threatening human safety. The direct costs of corrosion to the U.S. economy represent 3.2 percent of the gross domestic product (GDP), and the total costs to society can be twice that or greater. Opportunities for savings through improved corrosion control exist in every economic sector. The workshop, Corrosion Education for the 21st Century, brought together corrosion specialists, leaders in materials and engineering education, government officials, and other interested parties. The workshop was also attended by members of NRC's Committee on Assessing Corrosion Education, who are carrying out a study on this topic. The workshop panelists and speakers were asked to give their personal perspectives on whether corrosion abatement is adequately addressed in our nation's engineering curricula and, if not, what issues need to be addressed to develop a comprehensive corrosion curriculum in undergraduate engineering. This proceedings consists of extended abstracts from the workshop's speakers that reflect their personal views as presented to the meeting. Proceedings of the Materials Forum 2007: Corrosion Education for the 21st Century summarizes this form.
Protecting U.S. security by controlling technology export has long been a major issue. But the threat of the Soviet sphere is rapidly being superseded by state-sponsored terrorism; nuclear, chemical, biological, and missile proliferation; and other critical security factors. This volume provides a policy outline and specific steps for an urgently needed revamping of U.S. and multilateral export controls. It presents the latest information on these and many other pressing issues: The successes and failures of U.S. export controls, including a look at U.S. laws, regulations, and export licensing; U.S. participation in international agencies; and the role of industry. The effects of export controls on industry. The growing threat of "proliferation" technologies. World events make this volume indispensable to policymakers, government security agencies, technology exporters, and faculty and students of international affairs.
The National Nuclear Security Administration (NNSA)leads a nuclear security enterprise that includes three national laboratories, several production facilities, and an experimental test site. NNSA's mission is protect the American people by maintaining a safe, secure, and effective nuclear weapons stockpile; by reducing global nuclear threats; and by providing the U.S. Navy with safe, militarily effective naval nuclear propulsion plants. The FY2016 National Defense Authorization Act called for the National Academies, in partnership with the National Academy of Public Administration, to track and assess progress over 2016-2020 to reform governance and management of the enterprise. Governance and Management of the Nuclear Security Enterprise assesses the effectiveness of reform efforts and makes recommendations for further action.
The military, political, and economic preeminence of the United States during the post-World War II era is based to a substantial degree on its superior rate of achievement in science and technology, as well as on its capacity to translate these achievements into products and processes that contribute to economic prosperity and the national defense. The success of the U.S. scientific enterprise has been facilitated by many factors, important among them the opportunity for American scientists and engineers to pursue their research-and to communicate with each other-in a free and open environment. During the last two administrations, however, concern has arisen that the characteristically open U.S. scientific community has served as one of the channels through which critical information and know-how are flowing to the Soviet Union and to other potential adversary countries; openness in science is thus perceived to present short-term national security risks in addition to its longer-term national security benefits in improved U.S. military technology. The Panel on Scientific Communication and National Security was asked to examine the various aspects of the application of controls to scientific communication and to suggest how to balance competing national objectives so as to best serve the general welfare. The Panel held three two-day meetings in Washington at which it was briefed by representatives of the departments of Defense, State, and Commerce, and by representatives of the intelligence community, including the Central Intelligence Agency, the Federal Bureau of Investigation, the Defense Intelligence Agency, and the National Security Agency. The Panel also heard presentations by members of the research community and by university representatives. In addition to these briefings, the Rand Corporation prepared an independent analysis of the transfer of sensitive technology from the United States to the Soviet Union. To determine the views of scientists and administrators at major research universities, the Panel asked a group of faculty members and administrative officials at Cornell University to prepare a paper incorporating their own views and those of counterparts at other universities. The main thrust of the Panel's findings is completely reflected in this document. However, the Panel has also produced a classified version of the subpanel report based on the secret intelligence information it was given; this statement is available at the Academy to those with the appropriate security clearance.
The electromagnetic spectrum is a vital part of our environment. Measures of radio frequency emissions from natural phenomena enable both practical applications, such as weather predictions and studies of the changing of Earth's climate here at home, and reveal the physical properties of cosmic sources. The spectrum is therefore a resource to be used wisely now and to be protected for future generations. Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses: Second Edition sets forth the principles for the allocation and protection of spectral bands for services using the radio spectrum for scientific research. This report describes the radio frequency bands used by scientific services and includes relevant regulatory information and discussion of scientific use of frequency bands. This reference will guide spectrum managers and spectrum regulatory bodies on science issues and serve as a resource to scientists and other spectrum users.
The federal courts are seeking ways to increase the ability of judges to deal with difficult issues of scientific expert testimony. The workshop explored the new environment judges, plaintiffs, defendants, and experts face in light of "Daubert" and "Kumho," when presenting and evaluating scientific, engineering, and medical evidence.
In the years since the Shelby Amendment, scientists, industry, and policy makers have struggled over how the public's new right of access should be applied to scientific data. There is loose agreement that research data should be accessible, but wide disagreement over the "depth" to which the public has such a right. The National Academies' Science, Technology, and Law Program held a workshop to explore the mounting tensions in the federal regulatory process between the need to provide access to research data and the need to protect the integrity of the research process. The workshop provided a picture of the debate arising from passage of the Shelby Amendment and the resulting OMB revisions of Circular A-110. This report is a summary of the workshop.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959, annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering communities to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories’ resources. An Assessment of the National Institute of Standards and Technology Center for Nanoscale Science and Technology: Fiscal Year 2016 assesses the scientific and technical work performed by the NIST Center for Nanoscale Science and Technology and the accomplisments, challenges, and opportunities for improvement.
This report summarizes the 2018 findings of the Panel on Review of Extramural Basic Research at the Army Research Laboratory, which reviewed the programs at the Army Research Office's Information Sciences Directorate.
This report summarizes the 2019 findings of the Panel on Review of Extramural Basic Research at the Army Research Laboratory, which reviewed the programs at the Army Research Office's Physical Sciences Directorate.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959 annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering environments to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories' resources. This report assesses the scientific and technical work performed by the National Institute of Standards and Technology (NIST) Center for Neutron Research in the fiscal year 2018. It reviews the organization's technical programs; the portfolio of scientific expertise within the organization; the adequacy of the organization's facilities, equipment, and human resources; and the effectiveness with which the organization disseminates its program outputs.
During the 20th century, the city of Los Angeles diverted surface water flowing into Owens Lake for water supply, transforming the large, closed-basin, saline lake into a small brine pool surrounded by dry playa. Under high winds, the exposed lakebed produced large amounts of airborne dust, resulting in the highest concentrations of airborne particulate matter with an aerodynamic diameter of 10 micrometers or less (PM10) in the United States. Since 2000, the Los Angeles Department of Water and Power, at the direction of the Great Basin Unified Air Pollution Control District, has been constructing and implementing dust control measures on the dry lakebed, with the objective of meeting the U.S. Environmental Protection Agency National Ambient Air Quality Standards for PM10 and the PM10 standards set by the state of California. Many of the dust control measures used at Owens Lake require large amounts of water, energy, and maintenance to sustain their performance. Effectiveness and Impacts of Dust Control Measures for Owens Lake evaluates the effectiveness of alternative solutions for their degree of PM10 reduction and the extent that they reduce use of water in controlling dust emissions. This report considers the associated energy and environmental and economic impacts of these proposed measures and assesses their durability and reliability.
Information technology (IT) is widely understood to be the enabling technology of the 21st century. IT has transformed, and continues to transform, all aspects of our lives: commerce and finance, education, energy, health care, manufacturing, government, national security, transportation, communications, entertainment, science, and engineering. IT and its impact on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow in size and importance. IT’s impacts on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow. IT enabled innovation and advances in IT products and services draw on a deep tradition of research and rely on sustained investment and a uniquely strong partnership in the United States among government, industry, and universities. Past returns on federal investments in IT research have been extraordinary for both U.S. society and the U.S. economy. This IT innovation ecosystem fuels a virtuous cycle of innovation with growing economic impact. Building on previous National Academies work, this report describes key features of the IT research ecosystem that fuel IT innovation and foster widespread and longstanding impact across the U.S. economy. In addition to presenting established computing research areas and industry sectors, it also considers emerging candidates in both categories.
The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959 annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering environments to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories' resources. An Assessment of the National Institute of Standards and Technology Center for Neutron Research: Fiscal Year 2015 reviews the organization's technical programs, the portfolio of scientific expertise within the organization, the adequacy of the organization's facilities, equipment, and human resources, and the effectiveness with which the organization disseminates its program outputs.
The mission of the Engineering Laboratory (EL) of the National Institute of Standards and Technology (NIST) is to "promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology for engineered systems in ways that enhance economic security and improve quality of life." To support this mission the EL has developed thrusts in smart manufacturing, construction, and cyberphysical systems; in sustainable and energy-efficient manufacturing materials and infrastructure; and in disaster-resilient buildings, infrastructure, and communities. The technical work of the EL is performed in five divisions - Intelligent Systems, Materials and Structural Systems, Energy and Environment, Systems Integration, and Fire Research - and in two offices - the Applied Economics Office and the Smart Grid Program Office. At the request of the acting director of NIST, the National Academies of Sciences, Engineering, and Medicine assesses the scientific and technical work performed by the NIST Engineering Laboratory (EL). This publication reviews technical reports and technical program descriptions prepared by NIST staff summarizes the findings of the authoring panel.
There are approximately 4,000 fatalities in crashes involving trucks and buses in the United States each year. Though estimates are wide-ranging, possibly 10 to 20 percent of these crashes might have involved fatigued drivers. The stresses associated with their particular jobs (irregular schedules, etc.) and the lifestyle that many truck and bus drivers lead, puts them at substantial risk for insufficient sleep and for developing short- and long-term health problems. Commercial Motor Vehicle Driver Fatigue, Long-Term Health and Highway Safety assesses the state of knowledge about the relationship of such factors as hours of driving, hours on duty, and periods of rest to the fatigue experienced by truck and bus drivers while driving and the implications for the safe operation of their vehicles. This report evaluates the relationship of these factors to drivers' health over the longer term, and identifies improvements in data and research methods that can lead to better understanding in both areas.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959, annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering environments to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories' resources. Review of Three Divisions of the Information Technology Laboratory at the National Institute of Standards and Technology: Fiscal Year 2015 assesses the organization's technical programs, the portfolio of scientific expertise within the organization, the adequacy of the organization's facilities, equipment, and human resources, and the effectiveness by which the organization disseminates its program outputs.
Patterns of food consumption and nutritional intake strongly affect the population's health and well-being. The Food Economics Division of USDA's Economic Research Service (ERS) engages in research and data collection to inform policy making related to the leading federal nutrition assistance programs managed by USDA's Food and Nutrition Service. The ERS uses the Consumer Food Data System to understand why people choose foods, how food assistance programs affect these choices, and the health impacts of those choices. At the request of ERS, A Consumer Food Data System for 2030 and Beyond provides a blueprint for ERS's Food Economics Division for its data strategy over the next decade. This report explores the quality of data collected, the data collection process, and the kinds of data that may be most valuable to researchers, policy makers, and program administrators going forward. The recommendations of A Consumer Food Data System for 2030 and Beyond will guide ERS to provide and sustain a multisource, interconnected, reliable data system.
An Assessment of the Communications Technology Laboratory at the National Institute of Standards and Technology: Fiscal Year 2019 is an independent technical assessment of the quality of the National Institute of Standards and Technology's (NIST's) Communications Technology Laboratory (CTL). It reviews the organization's technical programs, the portfolio of scientific expertise within the organization, the adequacy of the organization's facilities, equipment, and human resources, and the effectiveness by which the organization disseminates its program outputs. This report focuses on CTL priority areas such as public safety communications, trusted spectrum testing, and Next Generation Wireless (5G and Beyond). It also assesses the extent to which CTL applied the recommendations from a 2015 National Academies' report, which describes many of the critical uses of radio communications, provides lab-specific recommendations, and highlights important research priorities for the Boulder, Colorado communications technology laboratory of the Department of Commerce laboratory. This new report also describes the current activities of the Boulder telecommunications laboratories, its strengths and weaknesses as an organization, and its plans for the near future
A congressionally mandated study carried out in 2013-2014 led to the November 2014 report A New Foundation for the Nuclear Enterprise. That report summarizes the panel's findings on the current health of the enterprise, examines the root causes of its governance challenges, and offers the panel's recommendations to address the identified problems. It concludes that the existing governance structures and many of the practices of the enterprise are inefficient and ineffective, thereby putting the entire enterprise at risk over the long term. It offers recommendations to put the entire nuclear security enterprise on a stronger footing. Recognizing the persistence of governance and management concerns, this report serves as an initial assessment of the implementation plan developed by the National Nuclear Security Administration and the Department Of Energy for addressing the recommendations from A New Foundation for the Nuclear Enterprise. There will be seven semi-annual interim reports to evaluate progress in implementing the plan. A final report will be issued at the end of the study to document the overall progress in executing the implementation plan, assess the effectiveness of the reform efforts under that plan, and recommend whether further action is needed.
The Physical Measurement Laboratory (PML) at the National Institute of Standards and Technology (NIST) is dedicated to three fundamental and complementary tasks: (1) increase the accuracy of our knowledge of the physical parameters that are the foundation of our technology-driven society; (2) disseminate technologies by which these physical parameters can be accessed in a standardized way by the stakeholders; and (3) conduct research at both fundamental and applied levels to provide knowledge that may eventually lead to advances in measurement approaches and standards. This report assesses the scientific and technical work performed by the PML and identifies salient examples of accomplishments, challenges, and opportunities for improvement for each of its nine divisions.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.