The focus of this report is on artificial intelligence (AI) and human-computer interface (HCI) technology. Observations, conclusions, and recommendations regarding AI and HCI are presented in terms of six grand challenge areas which serve to identify key scientific and engineering issues and opportunities. Chapter 1 presents the panel's definitions of these and related terms. Chapter 2 presents the panel's general observations and recommendations regarding AI and HCI. Finally, Chapter 3 discusses computer science, AI, and HCI in terms of the six selected "grand challenge" areas and three time horizons, that is, short term (within the next 2 years), midterm (2 to 6 years), and long term (more than 6 years from now) and presents additional recommendations in these areas.
Information technology (IT) is widely understood to be the enabling technology of the 21st century. IT has transformed, and continues to transform, all aspects of our lives: commerce and finance, education, energy, health care, manufacturing, government, national security, transportation, communications, entertainment, science, and engineering. IT and its impact on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow in size and importance. IT’s impacts on the U.S. economyâ€"both directly (the IT sector itself) and indirectly (other sectors that are powered by advances in IT)â€"continue to grow. IT enabled innovation and advances in IT products and services draw on a deep tradition of research and rely on sustained investment and a uniquely strong partnership in the United States among government, industry, and universities. Past returns on federal investments in IT research have been extraordinary for both U.S. society and the U.S. economy. This IT innovation ecosystem fuels a virtuous cycle of innovation with growing economic impact. Building on previous National Academies work, this report describes key features of the IT research ecosystem that fuel IT innovation and foster widespread and longstanding impact across the U.S. economy. In addition to presenting established computing research areas and industry sectors, it also considers emerging candidates in both categories.
The National Center for Science and Engineering Statistics (NCSES) of the National Science Foundation (NSF) communicates its science and engineering (S&E) information to data users in a very fluid environment that is undergoing modernization at a pace at which data producer dissemination practices, protocols, and technologies, on one hand, and user demands and capabilities, on the other, are changing faster than the agency has been able to accommodate. NCSES asked the Committee on National Statistics and the Computer Science and Telecommunications Board of the National Research Council to form a panel to review the NCSES communication and dissemination program that is concerned with the collection and distribution of information on science and engineering and to recommend future directions for the program. Communicating Science and Engineering Data in the Information Age includes recommendations to improve NCSES's dissemination program and improve data user engagement. This report includes recommendations such as NCSES's transition to a dissemination framework that emphasizes database management rather than data presentation, and that NCSES analyze the results of its initial online consumer survey and refine it over time. The implementation of the report's recommendations should be undertaken within an overall framework that accords priority to the basic quality of the data and the fundamentals of dissemination, then to significant enhancements that are achievable in the short term, while laying the groundwork for other long-term improvements.
Computers and telecommunications have revolutionized the processes of scientific research. How is this information technology being applied and what difficulties do scientists face in using information technology? How can these difficulties be overcome? Information Technology and the Conduct of Research answers these questions and presents a variety of helpful examples. The recommendations address the problems scientists experience in trying to gain the most benefit from information technology in scientific, engineering, and clinical research.
Simulations are widely used in the military for training personnel, analyzing proposed equipment, and rehearsing missions, and these simulations need realistic models of human behavior. This book draws together a wide variety of theoretical and applied research in human behavior modeling that can be considered for use in those simulations. It covers behavior at the individual, unit, and command level. At the individual soldier level, the topics covered include attention, learning, memory, decisionmaking, perception, situation awareness, and planning. At the unit level, the focus is on command and control. The book provides short-, medium-, and long-term goals for research and development of more realistic models of human behavior.
This book describes and evaluates existing models of human performance and their use in the design and evaluation of new human-technology systems. Its primary focus is on the modeling of system operators who perform supervisory and manual control tasks. After an introduction on human performance modeling, the book describes information processing, control theory, task network, and knowledge-based models. It explains models of human performance in aircraft operations, nuclear power plant control, maintenance, and the supervisory control of process control systems, such as oil refineries. The book concludes with a discussion of model parameterization and validation and recommends a number of lines of research needed to strengthen model development and application.
This report addresses a number of issues that have surfaced in the debates over the impact of technological change on employment. These issues include the effects of technological change on levels of employment and unemployment within the economy; on the displacement of workers in specific industries or sectors of the economy; on skill requirements; on the welfare of women, minorities, and labor force entrants in a technologically transformed economy; and on the organization of the firm and the workplace. It concludes that technological change will contribute significantly to growth in employment opportunities and wages, although workers in specific occupations and industries may have to move among jobs and careers. Recommends initiatives and options to assist workers in making such transitions. ISBN 0-309-03744-1 (pbk.).
Washington, D.C. (2101 Constitution Ave., NW, Washington 20418) : National Academy Press
Published Date
ISBN 10
0309037824
ISBN 13
9780309037822
Select your Age
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.