Solutions to most real-world optimization problems involve a trade-off between multiple conflicting and non-commensurate objectives. Some of the most challenging ones are area-delay trade-off in VLSI synthesis and design space exploration, time-space trade-off in computation, and multi-strategy games. Conventional search techniques are not equipped to handle the partial order state spaces of multiobjective problems since they inherently assume a single scalar objective function. Multiobjective heuristic search techniques have been developed to specifically address multicriteria combinatorial optimization problems. This text describes the multiobjective search model and develops the theoretical foundations of the subject, including complexity results . The fundamental algorithms for three major problem formulation schemes, namely state-space formulations, problem-reduction formulations, and game-tree formulations are developed with the support of illustrative examples. Applications of multiobjective search techniques to synthesis problems in VLSI, and operations research are considered. This text provides a complete picture on contemporary research on multiobjective search, most of which is the contribution of the authors.
Integrating formal property verification (FPV) into an existing design process raises several interesting questions. This book develops the answers to these questions and fits them into a roadmap for formal property verification – a roadmap that shows how to glue FPV technology into the traditional validation flow. The book explores the key issues in this powerful technology through simple examples that mostly require no background on formal methods.
This book focuses on the design and development of SU-8 polymer and silicon waveguide-based devices using the effective index based matrix method. Various fabrication techniques like laser direct writing (LDW), Focused Ion Beam (FIB) and optical lithography are discussed. FIB lithography has been explored for photonic-crystal structures on the waveguide and for directional coupler in coupled region. This technique is shown to be suitable in fabricating photonic crystal structures as well as for making any precise modifications in micro- and nano-meter photonic waveguide structures. This book can be a useful reference for students, researchers, and fabrication engineers working in the areas of integrated optics, optical communications, laser technology and optical lithography for device manufacturing.
Integrating formal property verification (FPV) into an existing design process raises several interesting questions. This book develops the answers to these questions and fits them into a roadmap for formal property verification – a roadmap that shows how to glue FPV technology into the traditional validation flow. The book explores the key issues in this powerful technology through simple examples that mostly require no background on formal methods.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.