This book retraces the emergence of relativity principles in early modern mechanics, documents their constructive use in eighteenth- and nineteenth-century mechanics, optics, and electrodynamics, and gives a well-rooted account of the genesis of special and general relativity in the early twentieth century. As an exercise in long-term history, it demonstrates the connectivity of issues and approaches across several centuries, despite enormous changes in context and culture." -- back cover.
The history of quantum theory is a maze of conceptual problems. In this lucid and learned book, Olivier Darrigol tracks the role of formal analogies between classical and quantum theory, from Planck's first introduction of the quantum of action to Dirac's formulation of quantum mechanics. In so doing, Darrigol illuminates not only the history of quantum theory but also the role of analogies in scientific thinking and theory change. The most remarkable result of such analogical argument in quantum theory was Bohr's correspondence principle which, in Darrigol's words, "performed the acrobatic task of bridging two mutually contradictory theories (classical electrodynamics and atomic theory), without diminishing the contrast between them". By analyzing the origins, development, and applications of this principle, From c-Numbers to q-Numbers explains the remarkable fruitfulness of the research done under Bohr's guidance between 1916 and 1925 and shows why Heisenberg claimed that quantum mechanics was born as "a quantitative formulation of the correspondence principle". With a physicist's sure hand, Darrigol examines the formal and the epistemological aspects of the analogy between classical and quantum mechanics. Unlike previous works, which have tended to focus on qualitative, global arguments, he follows the lines of mathematical reasoning and symbolizing, and by doing so he is able to show the motivations of early quantum theorists more precisely - and provocatively - than ever before. For instance, Darrigol demonstrates that a universal principle of elementary chaos underlay Planck's analogies, and that Bohr's correspondence principle was related to his elaboration of a minimal-quantumtheoretical language. Most striking, Darrigol reveals how Dirac's personal conception of the relations among algebra, geometry, use of the analogy between c-numbers and and physics conditioned his highly creative q-numbers. Original, erudite, and witty, From c-Numbers to q-Numbers sets a new standard for the philosophically perceptive and mathematically precise history of quantum mechanics. For years to come it will influence historical and philosophical discussions of twentieth-century physics.
Can we prove the necessity of our best physical theories by rational means, without appeal to experience? This book recounts a few ingenious attempts to derive physical theories by reason only, beginning with Descartes' geometric construction of the world, and finishing with recent derivations of quantum mechanics from natural axioms. Deductions based on theological, metaphysical, or transcendental arguments are worth remembering for the ways they motivated and structured physical theory, even though we would now criticize their excessive confidence in the power of the mind. Other deductions more modestly relied on criteria for the comprehensibility of nature, including forms of measurability, causality, homogeneity, and correspondence. The central thesis of this book is that such criteria, when properly applied to idealized systems, effectively determine some of our most important theories as well as the mathematical character of the laws of physics. The relevant arguments are not purely rational, because only experience can tell us to which extent nature is comprehensible in a given way. Nor do they block the possibility of ever more varied forms of comprehensibility. They nonetheless suggest the inevitability of much of our theoretical physics.
One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844-1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann's theoretical tool-box and to his patient construction of lofty formal systems even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object—and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously Boltzmann combined atoms, mechanics, and probability to invent new bridges between the micro- and macro-worlds.
This book is a long-term history of optics, from early Greek theories of vision to the nineteenth-century victory of the wave theory of light. It shows how light gradually became the central entity of a domain of physics that no longer referred to the functioning of the eye; it retraces the subsequent competition between medium-based and corpuscular concepts of light; and it details the nineteenth-century flourishing of mechanical ether theories. The author critically exploits and sometimes completes the more specialized histories that have flourished in the past few years. The resulting synthesis brings out the actors' long-term memory, their dependence on broad cultural shifts, and the evolution of disciplinary divisions and connections. Conceptual precision, textual concision, and abundant illustration make the book accessible to a broad variety of readers interested in the origins of modern optics.
This book provides the first fully-fledged history of hydrodynamics, including lively accounts of the concrete problems of hydraulics, navigation, blood circulation, meteorology, and aeronautics that motivated the main conceptual innovations. Richly illustrated, technically competent, and philosophically sensitive, it should attract a broad audience and become a standard reference for any one interested in fluid mechanics.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1992.
Motion is always relative to some thing. Is this thing a concrete body like the earth, is it an abstract space, or is it an imagined frame? Do the laws of physics depend on the choice of reference? It there a choice for which the laws are simplest? Is this choice unique? Is there a physical cause for the choice made? These questions traverse the history of modern physics from Galileo to Einstein. The answers involved Galilean relativity, Newton's absolute space, the purely relational concepts of Descartes, Leibniz, and Mach, and many forgotten uses of relativity principles in mechanics, optics, and electrodynamics - until the relativity theories of Poincaré, Einstein, Minkowksi, and Laue radically redefined space and time to satisfy universal kinds of relativity. Accordingly, this book retraces the emergence of relativity principles in early modern mechanics, documents their constructive use in eighteenth- and nineteenth-century mechanics, optics, and electrodynamics, and gives a well-rooted account of the genesis of special and general relativity in the early twentieth century. As an exercise in long-term history, it demonstrates the connectivity of issues and approaches across several centuries, despite enormous changes in context and culture. As an account of the genesis of relativity theories, it brings unprecedented clarity and fullness by broadening the spectrum of resources on which the principal actors drew.
One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844-1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann's theoretical tool-box and to his patient construction of lofty formal systems even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object—and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously Boltzmann combined atoms, mechanics, and probability to invent new bridges between the micro- and macro-worlds.
This book recounts the developments of fundamental electrodynamics from Ampère's investigation of the forces between electric currents to Einstein's introduction of a new doctrine of space and time. The emphasis is on the diverse, evolving practices of electrodynamics and the interactions between the corresponding scientific traditions. A richly documented, clearly written, and abundantly illustrated history of the subject.
This book recounts the developments of fundamental electrodynamics from Ampère's investigation of the forces between electric currents to Einstein's introduction of a new doctrine of space and time. The emphasis is on the diverse, evolving practices of electrodynamics, and on the interactions between the corresponding scientific traditions. This richly documented, clearly written, and abundantly illustrated history should appeal to students and scholars of physics, and those interested in the history and philosophy of science.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.