This book deals with adsorption and catalysis on the surface of transition elements and their compounds, many of which are in teresting because of their particular electronic structure. The authors have worked through a vast body of experimental evi dence on the structure and properties of surfaces of transition metals and relevant oxides. Consideration is given mostly to simple (as opposed to mixed) oxides of transition elements, to common metals and to the adsorption of simple gases. A great deal of attention is paid to the nature of active surface sites responsible for chemisorption and catalytic transformations. The description relies mainly on the simplified ligand-field theory, which, however, proves quite satisfactory for predicting the adsorptive and catalytic activity of species. In many cases simple systems were explored with the aid of novel techniques, and it is only for such systems that the mechanism of the ele mentary act of adsorption and catalysis can be given adequate treatment. The present monograph has emerged from our earlier work in Russian, which appeared in the Khimiya Publishing House (Mos cow) in 1981. This English edition has, however, been revised completely to broaden its scope and to include more recent a chievements. For fruitful discussions the authors are grateful to A.A.
Nonequilibrium Processes in Catalysis presents modern ideas and experimental data (e.g., molecular beams, laser technique) on adsorption and catalysis, the mechanism of energy exchange in the processes of particles interaction with a surface, and the lifetimes of excited particles on a surface. Previously unpublished theoretical information regarding the principle of chemoenergetical stimulation accounting for the acceleration of one reaction at the expense of reactant excitation in another is provided, and new ideas about nonequilibrium surface diffusion are explored. Examples of the formation of nonequilibrium dissipative structures in catalysis are presented, including auto-oscillations, auto-waves, multiplicity of kinetic regimes, nonequilibrium phase transition, and decelerated electron exchange between solid and adsorbed species. The book also describes new experimental methods for studying nonequilibrium and quick processes in catalysis. Nonequilibrium Processes in Catalysis will benefit physicists involved with surface science, chemists involved with adsorption and catalysis, engineers, vacuum scientists, physical chemists, materials chemists, students, and others interested in these processes.
Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-base properties of a surface. The catalytic activity and structure of solids are covered. The type of crystal lattice and crystalline lattice parameters are discussed. The text describes the decomposition of alcohols. A study of the dehydrogenation and hydrogenation reactions is presented. A chapter is devoted to the decomposition of inorganic hydrides. Another section focuses on the hydrogen-deuterium exchange and other simple reactions. The book can provide useful information to scientists, physicists, students, and researchers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.