This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.
This book presents original research results on pseudodifferential operators. C*-algebras generated by pseudodifferential operators with piecewise smooth symbols on a smooth manifold are considered. For each algebra, all the equivalence classes of irreducible representations are listed; as a consequence, a criterion for a pseudodifferential operator to be Fredholm is stated, the topology on the spectrum is described, and a solving series is constructed. Pseudodifferential operators on manifolds with edges are introduced, their properties are considered in details, and an algebra generated by the operators is studied. An introductory chapter includes all necessary preliminaries from the theory of pseudodifferential operators and C*-algebras.
This book studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Compared to its first edition, this book includes four new chapters, redistributes the content between chapters and modifies the estimates of the remainders in the asymptotics of resonant tunneling characteristics. The book is addressed to mathematicians, physicists, and engineers interested in waveguide theory and its applications in electronics.
This book describes, using first-person accounts, the history of the development in the Soviet Union and, later, in Russia of an extremely important technical field and how that history was influenced by WWI, WWII, and the Cold War, by government bureaucracy, in both positive and negative ways, by the economic collapse of the Soviet Union, and most importantly, by the dedicated efforts of vast numbers of individuals, including some of the greatest scientific minds of the 20th century. It will make fascinating reading for engineers and scientists who were engaged in similar work in the West, for historians of the Cold War and of the Soviet Union, and for present day researchers who need to learn about Russian scientific contributions.Because of its importance to national security, much of the research and development effort in underwater acoustics was classified during the Cold War, both in the Soviet Union and the United States. This book presents the first declassified accounts of the development of numerous hydroacoustic systems by individuals having first-hand knowledge of the development efforts.
This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.
This book studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Compared to its first edition, this book includes four new chapters, redistributes the content between chapters and modifies the estimates of the remainders in the asymptotics of resonant tunneling characteristics. The book is addressed to mathematicians, physicists, and engineers interested in waveguide theory and its applications in electronics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.