The main benefit of the book is that it explores available methodologies for both conducting in-situ measurements and adequately exploring the results, based on a case study that illustrates the benefits and difficulties of concurrent methodologies. The case study corresponds to a set of 25 social housing dwellings where an extensive in situ measurement campaign was conducted. The dwellings are located in the same quarter of a city. Measurements included indoor temperature and relative humidity, with continuous log in different rooms of each dwelling, blower-door tests and complete outdoor conditions provided by a nearby weather station. The book includes a variety of scientific and engineering disciplines, such as building physics, probability and statistics and civil engineering. It presents a synthesis of the current state of knowledge for benefit of professional engineers and scientists.
This book presents the state of the art of two areas: intelligent residential buildings and the behaviour of their occupants. These areas need to be treated together in order to develop new concepts for buildings, which are more efficient, more comfortable and more healthy. The concept of intelligent building is associated with the creation of a management system that takes into account the requirements of the occupants in terms of thermal comfort and their daily activities, maintaining good indoor air quality and minimizing energy consumption. In commercial or office buildings, these systems are already at an intermediate stage of implementation. However, in the residential sector they have yet to be significantly implemented. In mild climates, where the interactions of the occupants with the building mechanisms are the primary way to ensure adequate comfort and ventilation, the importance of occupant behaviour studies and their incorporation in the algorithms of the intelligent buildings becomes even more crucial. This book offers new concepts on how to bring these aspects together.
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measurement of relevant transport properties, and (d) the numerical investigation and application The main benefit of the book is that it discusses all the topics related to numerical simulation tools in building components (including state-of-the-art and applications) and presents some of the most important theoretical and numerical developments in building physics, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, this book will be going to the encounter of a variety of scientific and engineering disciplines, such as civil and mechanical engineering, architecture, etc... The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.
This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.
Biomedical Chemistry provides readers with an understanding of how fundamental chemical concepts are used to combat some diseases. The authors explain the interdisciplinary relationship of chemistry with biology, physics, pharmacy and medicine. The results of chemical research can be applied to understand chemical processes in cells and in the body, and new methods for drug transportation. Also, basic chemical ideas and determination of disease etiology are approached by developing techniques to ensure optimum interaction between drugs and human cells. This Book is an excellent resource for students and researchers in health-related fields with frontier topics in medicinal and pharmaceutical chemistry, organic chemistry and biochemistry.
This book presents the state of the art of two areas: intelligent residential buildings and the behaviour of their occupants. These areas need to be treated together in order to develop new concepts for buildings, which are more efficient, more comfortable and more healthy. The concept of intelligent building is associated with the creation of a management system that takes into account the requirements of the occupants in terms of thermal comfort and their daily activities, maintaining good indoor air quality and minimizing energy consumption. In commercial or office buildings, these systems are already at an intermediate stage of implementation. However, in the residential sector they have yet to be significantly implemented. In mild climates, where the interactions of the occupants with the building mechanisms are the primary way to ensure adequate comfort and ventilation, the importance of occupant behaviour studies and their incorporation in the algorithms of the intelligent buildings becomes even more crucial. This book offers new concepts on how to bring these aspects together.
The main benefit of the book is that it explores available methodologies for both conducting in-situ measurements and adequately exploring the results, based on a case study that illustrates the benefits and difficulties of concurrent methodologies. The case study corresponds to a set of 25 social housing dwellings where an extensive in situ measurement campaign was conducted. The dwellings are located in the same quarter of a city. Measurements included indoor temperature and relative humidity, with continuous log in different rooms of each dwelling, blower-door tests and complete outdoor conditions provided by a nearby weather station. The book includes a variety of scientific and engineering disciplines, such as building physics, probability and statistics and civil engineering. It presents a synthesis of the current state of knowledge for benefit of professional engineers and scientists.
This book presents a critical review on the development and application of hygrothermal analysis methods to simulate the coupled transport processes of Heat, Air, and Moisture (HAM) transfer for one or multidimensional cases. During the past few decades there has been relevant development in this field of study and an increase in the professional use of tools that simulate some of the physical phenomena that are involved in Heat, Air and Moisture conditions in building components or elements. Although there is a significant amount of hygrothermal models referred in the literature, the vast majority of them are not easily available to the public outside the institutions where they were developed, which restricts the analysis of this book to only 14 hygrothermal modelling tools. The special features of this book are (a) a state-of-the-art of numerical simulation tools applied to building physics, (b) the boundary conditions importance, (c) the material properties, namely, experimental methods for the measurement of relevant transport properties, and (d) the numerical investigation and application The main benefit of the book is that it discusses all the topics related to numerical simulation tools in building components (including state-of-the-art and applications) and presents some of the most important theoretical and numerical developments in building physics, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, this book will be going to the encounter of a variety of scientific and engineering disciplines, such as civil and mechanical engineering, architecture, etc... The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.