Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analytical mechanics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.