This book is for beginners who are struggling to understand and optimize non-linear problems. The content will help readers gain an understanding and learn how to formulate real-world problems and will also give insight to many researchers for their future prospects. It proposes a mind map for conceptual understanding and includes sufficient solved examples for reader comprehension. The theory is explained in a lucid way. The variety of examples are framed to raise the thinking level of the reader and the formulation of real-world problems are included in the last chapter along with applications. The book is self-explanatory, well synchronized and written for undergraduate, post graduate and research scholars.
The rapid development of high speed digital computers and the increasing desire for numerical answers to applied problems have led to increased demands in the courses dealing with the methods and techniques of numerical analysis. Numerical methods have always been useful but their role in the present-day scientific research has become prominent. For example, they enable one to find the roots of transcendental equations and in solving nonlinear differential equations. Indeed, they give the solution when ordinary analytical methods fail. This well-organized and comprehensive text aims at enhancing and strengthening numerical methods concepts among students using C++ programming, a fast emerging preferred programming language among software developers. The book provides an synthesis of both theory and practice. It focuses on the core areas of numerical analysis including algebraic equations, interpolation, boundary value problem, and matrix eigenvalue problems. The mathematical concepts are supported by a number of solved examples. Extensive self-review exercises and answers are provided at the end of each chapter to help students review and reinforce the key concepts. KEY FEATURES : C++ programs are provided for all numerical methods discussed. More than 400 unsolved problems and 200 solved problems are included to help students test their grasp of the subject. The book is intended for undergraduate and postgraduate students of Mathematics, Engineering and Statistics. Besides, students pursuing BCA and MCA and having Numerical Methods with C++ Programming as a subject in their course will benefit from this book.
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.
Differential equations play a noticeable role in engineering, physics, economics, and other disciplines. They permit us to model changing forms in both mathematical and physical problems. These equations are precisely used when a deterministic relation containing some continuously varying quantities and their rates of change in space and/or time is recognized or postulated. This book is intended to provide a straightforward introduction to the concept of partial differential equations. It provides a diversity of numerical examples framed to nurture the intellectual level of scholars. It includes enough examples to provide students with a clear concept and also offers short questions for comprehension. Construction of real-life problems is considered in the last chapter along with applications. Research scholars and students working in the fields of engineering, physics, and different branches of mathematics need to learn the concepts of partial differential equations to solve their problems. This book will serve their needs instead of having to use more complex books that contain more concepts than needed.
This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.
This comprehensive book deals with the theoretical aspects of operations research, and explains the concepts with practical examples. It begins by focusing on the need and prerequisites of operations research and moves on to discuss topics such as linear programming, integer programming, nonlinear programming, assignment problems, and inventory models in sufficient detail. Besides, this text also explains how to achieve different goals in the order of priority to optimize the objective function, various criteria of decision making under certainty, uncertainty and risk, and different techniques of analyzing the time involved in completing the project and the related cost. KEY FEATURES : Gives well-defined algorithms to illustrate the different techniques of operations research. Inventory problems are discussed with calculus. Provides worked-out examples in each chapter to illustrate the concepts discussed. This text is intended for the undergraduate and postgraduate students of Mathematics, Statistics, Engineering, and postgraduate students of Computer Applications and Business Administration. In addition, practising executives, consultants and managers will also find the book very useful.
Solid geometry is defined as the study of the geometry of three-dimensional solid figures in Euclidean space. There are numerous techniques in solid geometry, mainly analytic geometry and methods using vectors, since they use linear equations and matrix algebra. Solid geometry is quite useful in everyday life, for example, to design different signs and symbols such as octagon shape stop signs, to indicate traffic rules, to design different 3D objects like cubicles in gaming zones, innovative lifts, creative 3D interiors, and to design 3D computer graphics. Studying solid geometry helps students to improve visualization and increase logical thinking and creativity since it is applicable everywhere in day-to-day life. It builds up a foundation for advanced levels of mathematical studies. Numerous competitive exams include solid geometry since its foundation is required to study other branches like civil engineering, mechanical engineering, computer science engineering, architecture, etc. This book is designed especially for students of all levels, and can serve as a fundamental resource for advanced level studies not only in mathematics but also in various fields like engineering, interior design, architecture, etc. It includes theoretical aspects as well as numerous solved examples. The book includes numerical problems and problems of construction as well as practical problems as an application of the respective topic. A special feature of this book is that it includes solved examples using the mathematical tool MATLAB.
Sir Isaac Newton, one of the greatest scientists and mathematicians of all time, introduced the notion of a vector to define the existence of gravitational forces, the motion of the planets around the sun, and the motion of the moon around the earth. Vector calculus is a fundamental scientific tool that allows us to investigate the origins and evolution of space and time, as well as the origins of gravity, electromagnetism, and nuclear forces. Vector calculus is an essential language of mathematical physics, and plays a vital role in differential geometry and studies related to partial differential equations widely used in physics, engineering, fluid flow, electromagnetic fields, and other disciplines. Vector calculus represents physical quantities in two or three-dimensional space, as well as the variations in these quantities. The machinery of differential geometry, of which vector calculus is a subset, is used to understand most of the analytic results in a more general form. Many topics in the physical sciences can be mathematically studied using vector calculus techniques. This book is designed under the assumption that the readers have no prior knowledge of vector calculus. It begins with an introduction to vectors and scalars, and also covers scalar and vector products, vector differentiation and integrals, Gauss's theorem, Stokes's theorem, and Green's theorem. The MATLAB programming is given in the last chapter. This book includes many illustrations, solved examples, practice examples, and multiple-choice questions.
This book is for those interested in number systems, abstract algebra, and analysis. It provides an understanding of negative and fractional numbers with theoretical background and explains rationale of irrational and complex numbers in an easy to understand format. This book covers the fundamentals, proof of theorems, examples, definitions, and concepts. It explains the theory in an easy and understandable manner and offers problems for understanding and extensions of concept are included. The book provides concepts in other fields and includes an understanding of handling of numbers by computers. Research scholars and students working in the fields of engineering, science, and different branches of mathematics will find this book of interest, as it provides the subject in a clear and concise way.
This book introduces linear transformation and its key results, which have applications in engineering, physics, and various branches of mathematics. Linear transformation is a difficult subject for students. This concise text provides an in-depth overview of linear trans-formation. It provides multiple-choice questions, covers enough examples for the reader to gain a clear understanding, and includes exact methods with specific shortcuts to reach solutions for particular problems. Research scholars and students working in the fields of engineering, physics, and different branches of mathematics need to learn the concepts of linear transformation to solve their problems. This book will serve their need instead of having to use the more complex texts that contain more concepts then needed. The chapters mainly discuss the definition of linear transformation, properties of linear transformation, linear operators, composition of two or more linear transformations, kernels and range of linear transformation, inverse transformation, one-to-one and onto transformation, isomorphism, matrix linear transformation, and similarity of two matrices.
This book provides a clear understanding regarding the fundamentals of matrix and determinant from introduction to its real-life applications. The topic is considered one of the most important mathematical tools used in mathematical modelling. Matrix and Determinant: Fundamentals and Applications is a small self-explanatory and well synchronized book that provides an introduction to the basics along with well explained applications. The theories in the book are covered along with their definitions, notations, and examples. Illustrative examples are listed at the end of each covered topic along with unsolved comprehension questions, and real-life applications. This book provides a concise understanding of matrix and determinate which will be useful to students as well as researchers.
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.
Differential equations play a noticeable role in engineering, physics, economics, and other disciplines. They permit us to model changing forms in both mathematical and physical problems. These equations are precisely used when a deterministic relation containing some continuously varying quantities and their rates of change in space and/or time is recognized or postulated. This book is intended to provide a straightforward introduction to the concept of partial differential equations. It provides a diversity of numerical examples framed to nurture the intellectual level of scholars. It includes enough examples to provide students with a clear concept and also offers short questions for comprehension. Construction of real-life problems is considered in the last chapter along with applications. Research scholars and students working in the fields of engineering, physics, and different branches of mathematics need to learn the concepts of partial differential equations to solve their problems. This book will serve their needs instead of having to use more complex books that contain more concepts than needed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.