Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating systems comparison, it has become a de-facto standard input language of many planning systems, although it is not the only modelling language for planning. Several variants of PDDL have emerged that capture planning problems of different natures and complexities, with a focus on deterministic problems. The purpose of this book is two-fold. First, we present a unified and current account of PDDL, covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we want to introduce readers to the art of modelling planning problems in this language, through educational examples that demonstrate how PDDL is used to model realistic planning problems. The book is intended for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and implementation techniques they use.
Classical planning is the problem of finding a sequence of actions for achieving a goal from an initial state assuming that actions have deterministic effects. The most effective approach for finding such plans is based on heuristic search guided by heuristics extracted automatically from the problem representation. In this thesis, we introduce alternative approaches for performing inference over the structure of planning problems that do not appeal to heuristic functions, nor to reductions to other formalisms such as SAT or CSP. We show that many of the standard benchmark domains can be solved with almost no search or a polynomially bounded amount of search, once the structure of planning problems is taken into account. In certain cases we can characterize this structure in terms of a novel width parameter for classical planning.
Planning is the branch of Artificial Intelligence (AI) that seeks to automate reasoning about plans, most importantly the reasoning that goes into formulating a plan to achieve a given goal in a given situation. AI planning is model-based: a planning system takes as input a description (or model) of the initial situation, the actions available to change it, and the goal condition to output a plan composed of those actions that will accomplish the goal when executed from the initial situation. The Planning Domain Definition Language (PDDL) is a formal knowledge representation language designed to express planning models. Developed by the planning research community as a means of facilitating systems comparison, it has become a de-facto standard input language of many planning systems, although it is not the only modelling language for planning. Several variants of PDDL have emerged that capture planning problems of different natures and complexities, with a focus on deterministic problems. The purpose of this book is two-fold. First, we present a unified and current account of PDDL, covering the subsets of PDDL that express discrete, numeric, temporal, and hybrid planning. Second, we want to introduce readers to the art of modelling planning problems in this language, through educational examples that demonstrate how PDDL is used to model realistic planning problems. The book is intended for advanced students and researchers in AI who want to dive into the mechanics of AI planning, as well as those who want to be able to use AI planning systems without an in-depth explanation of the algorithms and implementation techniques they use.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.