The book is well-illustrated, earlier chapters with monochrome portraits of Mandelbrot, his family and those who influenced him, and later ones with striking colour pictures not only of the Mandelbrot set and other computer generated fractals, but also of ‘real’ fractals including cloud formations and rural and mountain scenes … This celebration of Mandelbrot’s scientific life is largely based on interviews that the author had with him when making films on his work … A challenge for historians of mathematics and science in coming years will be to produce a more broadly contextual and rounded account of the advent of fractals.'London Math SocietyThe time is right, following Benoît Mandelbrot's death in 2010, to publish this landmark book about the life and work of this maverick math genius.This compact book celebrates the life and achievements of Benoît Mandelbrot with the ideas of fractals presented in a way that can be understood by the interested lay-person. Mathematics is largely avoided. Instead, Mandelbrot's ideas and insights are described using a combination of intuition and pictures. The early part of the book is largely biographical, but it portrays well how Mandelbrot's life and ideas developed and led to the fractal notions that are surveyed in the latter parts of the book.
Fractals are the geometry of the natural world. They're about the broken, wrinkled, wiggly world- the uneven shapes of nature, unlike the idealised forms of Euclidean geometry. We see fractals everywhere; indeed, we are fractals ourselves. Fractal geometry is an extension of classical geometry which can make precise models of physical structures, from ferns to galaxies. It can describe the shape of a cloud as precisely as an architect can describe a house. Introducing Fractals traces the historical development of this mathematical discipline, explores its descriptive powers in the natural world, and then looks at the applications and the implications of the discoveries it has made. As John Archibald Wheeler, protégé of Niels Bohr, friend of Albert Einstein and mentor of Richard Feynman has said, 'No one will be considered scientifically literate tomorrow, who is not familiar with fractals.
Fractals are the geometry of the natural world. They're about the broken, wrinkled, wiggly world- the uneven shapes of nature, unlike the idealised forms of Euclidean geometry. We see fractals everywhere; indeed, we are fractals ourselves. Fractal geometry is an extension of classical geometry which can make precise models of physical structures, from ferns to galaxies. It can describe the shape of a cloud as precisely as an architect can describe a house. Introducing Fractals traces the historical development of this mathematical discipline, explores its descriptive powers in the natural world, and then looks at the applications and the implications of the discoveries it has made. As John Archibald Wheeler, protégé of Niels Bohr, friend of Albert Einstein and mentor of Richard Feynman has said, 'No one will be considered scientifically literate tomorrow, who is not familiar with fractals.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.