What if you could someday put the manufacturing power of an automobile plant on your desktop? It may sound far-fetched-but then, thirty years ago, the notion of "personal computers" in every home sounded like science fiction. According to Neil Gershenfeld, the renowned MIT scientist and inventor, the next big thing is personal fabrication -the ability to design and produce your own products, in your own home, with a machine that combines consumer electronics with industrial tools. Personal fabricators (PF's) are about to revolutionize the world just as personal computers did a generation ago. PF's will bring the programmability of the digital world to the rest of the world, by being able to make almost anything-including new personal fabricators. In FAB , Gershenfeld describes how personal fabrication is possible today, and how it is meeting local needs with locally developed solutions. He and his colleagues have created "fab labs" around the world, which, in his words, can be interpreted to mean "a lab for fabrication, or simply a fabulous laboratory." Using the machines in one of these labs, children in inner-city Boston have made saleable jewelry from scrap material. Villagers in India used their lab to develop devices for monitoring food safety and agricultural engine efficiency. Herders in the Lyngen Alps of northern Norway are developing wireless networks and animal tags so that their data can be as nomadic as their animals. And students at MIT have made everything from a defensive dress that protects its wearer's personal space to an alarm clock that must be wrestled into silence. These experiments are the vanguard of a new science and a new era-an era of "post-digital literacy" in which we will be as familiar with digital fabrication as we are with the of information processing. In this groundbreaking book, the scientist pioneering the revolution in personal fabrication reveals exactly what is being done, and how. The technology of FAB will allow people to create the objects they desire, and the kind of world they want to live in.
In When Things Start to Think, Neil Gershenfeld tells the story of his Things that Think group at MIT's Media Lab, the group of innovative scientists and researchers dedicated to integrating digital technology into the fabric of our lives. Gershenfeld offers a glimpse at the brave new post-computerized world, where microchips work for us instead of against us. He argues that we waste the potential of the microchip when we confine it to a box on our desk: the real electronic revolution will come when computers have all but disappeared into the walls around us. Imagine a digital book that looks like a traditional book printed on paper and is pleasant to read in bed but has all the mutability of a screen display. How about a personal fabricator that can organize digitized atoms into anything you want, or a musical keyboard that can be woven into a denim jacket? When Things Start to Think is a book for people who want to know what the future is going to look like, and for people who want to know how to create the future.
That's the promise, and peril, of the third digital revolution, where anyone will be able to make (almost) anything Two digital revolutions -- computing and communication -- have radically transformed our economy and lives. A third digital revolution is here: fabrication. Today's 3D printers are only the start of a trend, accelerating exponentially, to turn data into objects: Neil Gershenfeld and his collaborators ultimately aim to create a universal replicator straight out of Star Trek. While digital fabrication promises us self-sufficient cities and the ability to make (almost) anything, it could also lead to massive inequality. The first two digital revolutions caught most of the world flat-footed, thanks to Designing Reality that won't be true this time.
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.
What if you could someday put the manufacturing power of an automobile plant on your desktop? It may sound far-fetched-but then, thirty years ago, the notion of "personal computers" in every home sounded like science fiction. According to Neil Gershenfeld, the renowned MIT scientist and inventor, the next big thing is personal fabrication -the ability to design and produce your own products, in your own home, with a machine that combines consumer electronics with industrial tools. Personal fabricators (PF's) are about to revolutionize the world just as personal computers did a generation ago. PF's will bring the programmability of the digital world to the rest of the world, by being able to make almost anything-including new personal fabricators. In FAB , Gershenfeld describes how personal fabrication is possible today, and how it is meeting local needs with locally developed solutions. He and his colleagues have created "fab labs" around the world, which, in his words, can be interpreted to mean "a lab for fabrication, or simply a fabulous laboratory." Using the machines in one of these labs, children in inner-city Boston have made saleable jewelry from scrap material. Villagers in India used their lab to develop devices for monitoring food safety and agricultural engine efficiency. Herders in the Lyngen Alps of northern Norway are developing wireless networks and animal tags so that their data can be as nomadic as their animals. And students at MIT have made everything from a defensive dress that protects its wearer's personal space to an alarm clock that must be wrestled into silence. These experiments are the vanguard of a new science and a new era-an era of "post-digital literacy" in which we will be as familiar with digital fabrication as we are with the of information processing. In this groundbreaking book, the scientist pioneering the revolution in personal fabrication reveals exactly what is being done, and how. The technology of FAB will allow people to create the objects they desire, and the kind of world they want to live in.
In When Things Start to Think, Neil Gershenfeld tells the story of his Things that Think group at MIT's Media Lab, the group of innovative scientists and researchers dedicated to integrating digital technology into the fabric of our lives. Gershenfeld offers a glimpse at the brave new post-computerized world, where microchips work for us instead of against us. He argues that we waste the potential of the microchip when we confine it to a box on our desk: the real electronic revolution will come when computers have all but disappeared into the walls around us. Imagine a digital book that looks like a traditional book printed on paper and is pleasant to read in bed but has all the mutability of a screen display. How about a personal fabricator that can organize digitized atoms into anything you want, or a musical keyboard that can be woven into a denim jacket? When Things Start to Think is a book for people who want to know what the future is going to look like, and for people who want to know how to create the future.
That's the promise, and peril, of the third digital revolution, where anyone will be able to make (almost) anything Two digital revolutions -- computing and communication -- have radically transformed our economy and lives. A third digital revolution is here: fabrication. Today's 3D printers are only the start of a trend, accelerating exponentially, to turn data into objects: Neil Gershenfeld and his collaborators ultimately aim to create a universal replicator straight out of Star Trek. While digital fabrication promises us self-sufficient cities and the ability to make (almost) anything, it could also lead to massive inequality. The first two digital revolutions caught most of the world flat-footed, thanks to Designing Reality that won't be true this time.
Artificial intelligence is everywhere – from the apps on our phones to the algorithms of search engines. Without us noticing, the AI revolution has arrived. But what does this mean for the world of design? The first volume in a two-book series, Architecture in the Age of Artificial Intelligence introduces AI for designers and considers its positive potential for the future of architecture and design. Explaining what AI is and how it works, the book examines how different manifestations of AI will impact the discipline and profession of architecture. Highlighting current case-studies as well as near-future applications, it shows how AI is already being used as a powerful design tool, and how AI-driven information systems will soon transform the design of buildings and cities. Far-sighted, provocative and challenging, yet rooted in careful research and cautious speculation, this book, written by architect and theorist Neil Leach, is a must-read for all architects and designers – including students of architecture and all design professionals interested in keeping their practice at the cutting edge of technology.
This edition draws on data from the ethology of defense learning theory, anxiety disorders, the psychopharmacology of anti-anxiety drugs and amnesia to present a theory of anxiety and the brain systems, especially the septo-hippocampal system that subserve it.
The Physics of Information Technology explores the familiar devices that we use to collect, transform, transmit, and interact with electronic information. Many such devices operate surprisingly close to very many fundamental physical limits. Understanding how such devices work, and how they can (and cannot) be improved, requires deep insight into the character of physical law as well as engineering practice. The book starts with an introduction to units, forces, and the probabilistic foundations of noise and signalling, then progresses through the electromagnetics of wired and wireless communications, and the quantum mechanics of electronic, optical, and magnetic materials, to discussions of mechanisms for computation, storage, sensing, and display. This self-contained volume will help both physical scientists and computer scientists see beyond the conventional division between hardware and software to understand the implications of physical theory for information manipulation.
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.
The Physics of Information Technology explores the familiar devices that we use to collect, transform, transmit, and interact with electronic information. Many such devices operate surprisingly close to very many fundamental physical limits. Understanding how such devices work, and how they can (and cannot) be improved, requires deep insight into the character of physical law as well as engineering practice. The book starts with an introduction to units, forces, and the probabilistic foundations of noise and signalling, then progresses through the electromagnetics of wired and wireless communications, and the quantum mechanics of electronic, optical, and magnetic materials, to discussions of mechanisms for computation, storage, sensing, and display. This self-contained volume will help both physical scientists and computer scientists see beyond the conventional division between hardware and software to understand the implications of physical theory for information manipulation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.