This book presents MOSFET-based current mode logic (CML) topologies, which increase the speed, and lower the transistor count, supply voltage and power consumption. The improved topologies modify the conventional PDN, load, and the current source sections of the basic CML gates. Electronic system implementation involves embedding digital and analog circuits on a single die shifting towards mixed-mode circuit design. The high-resolution, low-power and low-voltage analog circuits are combined with high-frequency complex digital circuits, and the conventional static CMOS logic generates large current spikes during the switching (also referred to as digital switching noise), which degrade the resolution of the sensitive analog circuits via supply line and substrate coupling. This problem is exacerbated further with scaling down of CMOS technology due to higher integration levels and operating frequencies. In the literature, several methods are described to reduce the propagation of the digital switching noise. However, in high-resolution applications, these methods are not sufficient. The conventional CMOS static logic is no longer an effective solution, and therefore an alternative with reduced current spikes or that draws a constant supply current must be selected. The current mode logic (CML) topology, with its unique property of requiring constant supply current, is a promising alternative to the conventional CMOS static logic.
This book covers the theory, modeling, and implementation of different RF energy harvesting systems. RF energy harvesting is the best choice among the existing renewable energy sources, in terms of availability, cost, size, and integration with other systems. The device used for harvesting RF energy is called rectenna. A rectenna can work at the microwave, millimeter-wave, and terahertz waves. It also has the capability to operate at optical frequencies to be used for 6G and beyond communication systems. This book covers all aspects of wireless power transfer (WPT)/wireless energy harvesting (WEH), basics, theoretical concepts, and advanced developments occurring in the field of energy harvesting. It also covers the design theory for different types of antenna, rectifier, and impedance matching circuits used in RF energy harvesting systems. Different future and present applications, such as charging of vehicles, smart medical health care, self-driven e-vehicles, self-sustainable home automation system, and wireless drones, have also been discussed in detail.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.