This book provides a starting point for software professionals to apply artificial neural networks for software reliability prediction without having analyst capability and expertise in various ANN architectures and their optimization. Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process are presented. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators.
The development of software system with acceptable level of reliability and quality within available time frame and budget becomes a challenging objective. This objective could be achieved to some extent through early prediction of number of faults present in the software, which reduces the cost of development as it provides an opportunity to make early corrections during development process. The book presents an early software reliability prediction model that will help to grow the reliability of the software systems by monitoring it in each development phase, i.e. from requirement phase to testing phase. Different approaches are discussed in this book to tackle this challenging issue. An important approach presented in this book is a model to classify the modules into two categories (a) fault-prone and (b) not fault-prone. The methods presented in this book for assessing expected number of faults present in the software, assessing expected number of faults present at the end of each phase and classification of software modules in fault-prone or no fault-prone category are easy to understand, develop and use for any practitioner. The practitioners are expected to gain more information about their development process and product reliability, which can help to optimize the resources used.
Keeping in view the growth of the technological frontiers, there is always a need for the development of reliable, fault tolerant and cost- effective interconnection networks (INs) which are the critical metrics to achieve the goal of parallelism. The main objective of this book is to design new fault tolerant interconnection network layouts capable of path redundancy among dynamic failures. New INs designs are proposed and their observed results are found promising when compared with some of the earlier networks. The book also covers the reliability evaluation of various industrial network topologies considering multiple reliability performance parameters (2-TR, broadcast and ATR). Finally, the book also focuses on reliability evaluation and comparison of various topologies considering connectivity among multiple sources and multiple destinations (MSMT) nodes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.