This report is the first in a congressionally mandated series of biennial evaluations of the progress being made by the Comprehensive Everglades Restoration Plan (CERP), a multibillion-dollar effort to restore historical water flows to the Everglades and return the ecosystem closer to its natural state, before it was transformed by drainage and by urban and agricultural development. The Restoration plan, which was launched in 1999 by the U.S. Army Corps of Engineers and the South Florida Water Management District, includes more than 40 major projects that are expected to be completed over the next three decades. The report finds that progress has been made in developing the scientific basis and management structures needed to support a massive effort to restore the Florida Everglades ecosystem. However, some important projects have been delayed due to several factors including budgetary restrictions and a project planning process that that can be stalled by unresolved scientific uncertainties. The report outlines an alternative approach that can help the initiative move forward even as it resolves remaining scientific uncertainties. The report calls for a boost in the rate of federal spending if the restoration of Everglades National Park and other projects are to be completed on schedule.
Twelve years into the Comprehensive Everglades Restoration Project, little progress has been made in restoring the core of the remaining Everglades ecosystem; instead, most project construction so far has occurred along its periphery. To reverse ongoing ecosystem declines, it will be necessary to expedite restoration projects that target the central Everglades, and to improve both the quality and quantity of the water in the ecosystem. The new Central Everglades Planning Project offers an innovative approach to this challenge, although additional analyses are needed at the interface of water quality and water quantity to maximize restoration benefits within existing legal constraints. Progress Toward Restoring the Everglades: The Fourth Biennial Review, 2012 explains the innovative approach to expedite restoration progress and additional rigorous analyses at the interface of water quality and quantity will be essential to maximize restoration benefits.
During the past century, the Everglades, one of the world's treasured ecosystems, has been dramatically altered by drainage and water management infrastructure that was intended to improve flood management, urban water supply, and agricultural production. The remnants of the original Everglades now compete for water with urban and agricultural interests and are impaired by contaminated runoff from these two sectors. The Comprehensive Everglades Restoration Plan (CERP), a joint effort launched by the state and the federal government in 2000, seeks to reverse the decline of the ecosystem. The multibillion-dollar project was originally envisioned as a 30- to 40-year effort to achieve ecological restoration by reestablishing the natural hydrologic characteristics of the Everglades, where feasible, and to create a water system that serves the needs of both the natural and the human systems of South Florida. Over the past two years, impressive progress has been made in planning new CERP projects, and the vision for CERP water storage is now becoming clear. Construction and completion of authorized CERP projects will likely take several decades, and at this pace of restoration, it is even more imperative that agencies anticipate and design for the Everglades of the future. This seventh biennial review assesses the progress made in meeting the goals of the CERP and provides an in-depth review of CERP monitoring, with particular emphasis on project-level monitoring and assessment. It reviews developments in research and assessment that inform restoration decision making, and identifies issues for in-depth evaluation considering new CERP program developments, policy initiatives, or improvements in scientific knowledge that have implications for restoration progress.
Gulf Coast communities and natural resources suffered extensive direct and indirect damage as a result of the largest accidental oil spill in US history, referred to as the Deepwater Horizon (DWH) oil spill. Notably, natural resources affected by this major spill include wetlands, coastal beaches and barrier islands, coastal and marine wildlife, seagrass beds, oyster reefs, commercial fisheries, deep benthos, and coral reefs, among other habitats and species. Losses include an estimated 20% reduction in commercial fishery landings across the Gulf of Mexico and damage to as much as 1,100 linear miles of coastal salt marsh wetlands. This historic spill is being followed by a restoration effort unparalleled in complexity and magnitude in U.S. history. Legal settlements in the wake of DWH led to the establishment of a set of programs tasked with administering and supporting DWH-related restoration in the Gulf of Mexico. In order to ensure that restoration goals are met and money is well spent, restoration monitoring and evaluation should be an integral part of those programs. However, evaluations of past restoration efforts have shown that monitoring is often inadequate or even absent. Effective Monitoring to Evaluate Ecological Restoration in the Gulf of Mexico identifies best practices for monitoring and evaluating restoration activities to improve the performance of restoration programs and increase the effectiveness and longevity of restoration projects. This report provides general guidance for restoration monitoring, assessment, and synthesis that can be applied to most ecological restoration supported by these major programs given their similarities in restoration goals. It also offers specific guidance for a subset of habitats and taxa to be restored in the Gulf including oyster reefs, tidal wetlands, and seagrass habitats, as well as a variety of birds, sea turtles, and marine mammals.
The Environmental Protection Agency (EPA) applies scientific results that have been provided by various parts of its own organization and by external organizations. The agency requires substantial high-quality inhouse scientific expertise and laboratory capabilities so that it can answer questions related to regulation, enforcement, and environmental effects of specific chemicals, activities, and processes. It is also usually faced with situations in which research or analytic work is time-critical, so it maintains dedicated laboratory staff and facilities that can respond quickly to such needs. In recent years, EPA has made several changes to improve the efficiency and effectiveness of its laboratories, such as the designation of national program directors to align the work of research laboratories with the needs of the agency's regulatory program offices. The agency is currently undertaking an integrated evaluation of it laboratories to enhance the management effectiveness and efficiency of its laboratory enterprise and to enhance its capabilities for research and other laboratory-based scientific and technical activities. The results of EPA's evaluation are expected to include options for colocation and consolidation of laboratory facilities. Rethinking the Components, Coordination, and Management of U.S. Environmental Protection Agency Laboratories assesses EPA's highest-priority needs for mission-relevant laboratory science and technical support, develops principles for the efficient and effective management of EPA's laboratory enterprise to meet the agency's mission needs and strategic goals, and develops guidance for enhancing efficiency and effectiveness now and during the next 10 years. EPA's laboratories play a vital role in the agency's work. The findings and recommendations of this report will help EPA to develop an implementation plan for the laboratory enterprise.
The U.S. Army Corps of Engineers (Corps) is responsible for construction, operations, and maintenance of much of the nation's water resources infrastructure. This infrastructure includes flood control levees, multi-purpose dams, locks, navigation channels, port and harbor facilities, and beach protection infrastructure. The Corps of Engineers also regulates the dredging and filling of wetlands subject to federal jurisdictions. Along with its programs for flood damage reduction and support of commercial navigation, ecosystem restoration was added as a primary Corps mission area in 1996. The National Research Council (NRC) Committee on U.S. Army Corps of Engineers on Water Resources Science, Engineering, and Planning was convened by the NRC at the request of the Corps of Engineers to provide independent advice to the Corps on an array of strategic and planning issues. National Water Resources Challenges Facing the U.S. Army Corps of Engineers surveys the key water resources challenges facing the Corps, the limits of what might be expected today from the Corps, and future prospects for the agency. This report presents several findings, but no recommendations, to the Corps of Engineers based on initial investigations and discussions with Corps leadership. National Water Resources Challenges Facing the U.S. Army Corps of Engineers can serve as a foundational resource for the Corps of Engineers, U.S. Congress, federal agencies, and Corps project co-sponsors, among others.
Over the past century, the U.S. Army Corps of Engineers has built a vast network of water management infrastructure that includes approximately 700 dams, 14,000 miles of levees, 12,000 miles of river navigation channels and control structures, harbors and ports, and other facilities. Historically, the construction of new infrastructure dominated the Corps' water resources budget and activities. Today, national water needs and priorities increasingly are shifting to operations, maintenance, and rehabilitation of existing infrastructure, much of which has exceeded its design life. However, since the mid-1980s federal funding for new project construction and major rehabilitation has declined steadily. As a result, much of the Corps' water resources infrastructure is deteriorating and wearing out faster than it is being replaced. Corps of Engineers Water Resources Infrastrucutre: Deterioration, Investment, or Divestment? explores the status of operations, maintenance, and rehabilitation of Corps water resources infrastructure, and identifies options for the Corps and the nation in setting maintenance and rehabilitation priorities.
The US Fish and Wildlife Service (FWS) and the National Marine Fisheries Service (NMFS) are responsible for protecting species that are listed as endangered or threatened under the Endangered Species Act (ESA) and for protecting habitats that are critical for their survival. The US Environmental Protection Agency (EPA) is responsible for registering or reregistering pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and must ensure that pesticide use does not cause any unreasonable adverse effects on the environment, which is interpreted to include listed species and their critical habitats. The agencies have developed their own approaches to evaluating environmental risk, and their approaches differ because their legal mandates, responsibilities, institutional cultures, and expertise differ. Over the years, the agencies have tried to resolve their differences but have been unsuccessful in reaching a consensus regarding their assessment approaches. As a result, FWS, NMFS, EPA, and the US Department of Agriculture asked the National Research Council (NRC) to examine scientific and technical issues related to determining risks posed to listed species by pesticides. Specifically, the NRC was asked to evaluate methods for identifying the best scientific data available; to evaluate approaches for developing modeling assumptions; to identify authoritative geospatial information that might be used in risk assessments; to review approaches for characterizing sublethal, indirect, and cumulative effects; to assess the scientific information available for estimating effects of mixtures and inert ingredients; and to consider the use of uncertainty factors to account for gaps in data. Assessing Risks to Endangered and Threatened Species from Pesticides, which was prepared by the NRC Committee on Ecological Risk Assessment under FIFRA and ESA, is the response to that request.
This book is the second biennial evaluation of progress being made in the Comprehensive Everglades Restoration Plan (CERP), a multibillion-dollar effort to restore historical water flows to the Everglades and return the ecosystem closer to its natural state. Launched in 2000 by the U.S. Army Corps of Engineers and the South Florida Water Management District, CERP is a multiorganization planning process that includes approximately 50 major projects to be completed over the next several decades. Progress Toward Restoring the Everglades: The Second Biennial Review 2008 concludes that budgeting, planning, and procedural matters are hindering a federal and state effort to restore the Florida Everglades ecosystem, which is making only scant progress toward achieving its goals. Good science has been developed to support restoration efforts, but future progress is likely to be limited by the availability of funding and current authorization mechanisms. Despite the accomplishments that lay the foundation for CERP construction, no CERP projects have been completed to date. To begin reversing decades of decline, managers should address complex planning issues and move forward with projects that have the most potential to restore the natural ecosystem.
Although the progress of environmental restoration projects in the Florida Everglades remains slow overall, there have been improvements in the pace of restoration and in the relationship between the federal and state partners during the last two years. However, the importance of several challenges related to water quantity and quality have become clear, highlighting the difficulty in achieving restoration goals for all ecosystem components in all portions of the Everglades. Progress Toward Restoring the Everglades explores these challenges. The book stresses that rigorous scientific analyses of the tradeoffs between water quality and quantity and between the hydrologic requirements of Everglades features and species are needed to inform future prioritization and funding decisions.
Twelve years into the Comprehensive Everglades Restoration Project, little progress has been made in restoring the core of the remaining Everglades ecosystem; instead, most project construction so far has occurred along its periphery. To reverse ongoing ecosystem declines, it will be necessary to expedite restoration projects that target the central Everglades, and to improve both the quality and quantity of the water in the ecosystem. The new Central Everglades Planning Project offers an innovative approach to this challenge, although additional analyses are needed at the interface of water quality and water quantity to maximize restoration benefits within existing legal constraints. Progress Toward Restoring the Everglades: The Fourth Biennial Review, 2012 explains the innovative approach to expedite restoration progress and additional rigorous analyses at the interface of water quality and quantity will be essential to maximize restoration benefits.
The Everglades ecosystem is vast, stretching more than 200 miles from Orlando to Florida Bay, and Everglades National Park is but a part located at the southern end. During the 19th and 20th centuries, the historical Everglades has been reduced to half of its original size, and what remains is not the pristine ecosystem many image it to be, but one that has been highly engineered and otherwise heavily influenced, and is intensely managed by humans. Rather than slowly flowing southward in a broad river of grass, water moves through a maze of canals, levees, pump stations, and hydraulic control structures, and a substantial fraction is diverted from the natural system to meet water supply and flood control needs. The water that remains is polluted by phosphorus and other contaminants originating from agriculture and other human activities. Many components of the natural system are highly degraded and continue to degrade. Progress Toward Restoring the Everglades is the fifth biennial review of progress made in meeting the goals of the Comprehensive Everglades Restoration Plan (CERP). This complex, multibillion-dollar project to protect and restore the remaining Everglades has a 30-40 year timeline. This report assesses progress made in the various separate project components and discusses specific scientific and engineering issues that may impact further progress. According to Progress Toward Restoring the Everglades, a dedicated source of funding could provide ongoing long-term system-wide monitoring and assessment that is critical to meeting restoration objectives. The report makes recommendations for restoration activities, project management strategies, management of invasive nonnative species, and high-priority research needs.
During the past century, the Everglades, one of the world's treasured ecosystems, has been dramatically altered by drainage and water management infrastructure that was intended to improve flood management, urban water supply, and agricultural production. The remnants of the original Everglades now compete for water with urban and agricultural interests and are impaired by contaminated runoff from these two sectors. The Comprehensive Everglades Restoration Plan (CERP), a joint effort launched by the state and the federal government in 2000, seeks to reverse the decline of the ecosystem. The multibillion-dollar project was originally envisioned as a 30- to 40-year effort to achieve ecological restoration by reestablishing the natural hydrologic characteristics of the Everglades, where feasible, and to create a water system that serves the needs of both the natural and the human systems of South Florida. Over the past two years, impressive progress has been made in planning new CERP projects, and the vision for CERP water storage is now becoming clear. Construction and completion of authorized CERP projects will likely take several decades, and at this pace of restoration, it is even more imperative that agencies anticipate and design for the Everglades of the future. This seventh biennial review assesses the progress made in meeting the goals of the CERP and provides an in-depth review of CERP monitoring, with particular emphasis on project-level monitoring and assessment. It reviews developments in research and assessment that inform restoration decision making, and identifies issues for in-depth evaluation considering new CERP program developments, policy initiatives, or improvements in scientific knowledge that have implications for restoration progress.
The Everglades ecosystem is vast, stretching more than 200 miles from Orlando to Florida Bay, and Everglades National Park is but a part located at the southern end. During the 19th and 20th centuries, the historical Everglades has been reduced to half of its original size, and what remains is not the pristine ecosystem many image it to be, but one that has been highly engineered and otherwise heavily influenced, and is intensely managed by humans. Rather than slowly flowing southward in a broad river of grass, water moves through a maze of canals, levees, pump stations, and hydraulic control structures, and a substantial fraction is diverted from the natural system to meet water supply and flood control needs. The water that remains is polluted by phosphorus and other contaminants originating from agriculture and other human activities. Many components of the natural system are highly degraded and continue to degrade. Progress Toward Restoring the Everglades is the sixth biennial review of progress made in meeting the goals of the Comprehensive Everglades Restoration Plan (CERP). This complex, multibillion-dollar project to protect and restore the remaining Everglades has a 30-40 year timeline. This report assesses progress made in the various separate project components and discusses specific scientific and engineering issues that may impact further progress. According to Progress Toward Restoring the Everglades, a dedicated source of funding could provide ongoing long-term system-wide monitoring and assessment that is critical to meeting restoration objectives. This report examines the implications of knowledge gained and changes in widely accepted scientific understanding regarding pre-drainage hydrology, climate change, and the feasibility of water storage since the CERP was developed.
The Florida Everglades is a treasured ecosystem, but the water quality, quantity, flow, and distribution have been dramatically degraded by drainage and infrastructure development during the past century. A joint effort launched by the State and federal government in 2000, the Comprehensive Everglades Restoration Plan (CERP) seeks to reverse the decline of the ecosystem. The National Academies have provided a biennial review of CERP since 2004. This tenth biennial report in the series highlights significant recent restoration progress and offers guidance in three areas: applying Indigenous Knowledge in project planning, using modeling tools for understanding the effects of climate change on the CERP, and strengthening adaptive management for CERP decision making. Thanks to record state and federal investments in recent years, the pace of restoration implementation has reached historic levels and sizeable restoration benefits have been achieved. However, information on natural system restoration progress relative to CERP expectations continues to be difficult to find and interpret. The report recommends modeling tools be applied to anticipate the effects of climate change, including temperature and precipitation, on CERP outcomes and to inform planning and management. Moving forward, consistent and meaningful engagement between CERP agencies and tribal nations is necessary to create a partnership where Indigenous Knowledge can be considered and applied in restoration decision-making. Building expertise and a culture of adaptive management can help ensure continued restoration progress amid uncertainties and improve restoration outcomes through the incorporation of new information.
This report is a product of the Committee on Restoration of the Greater Everglades Ecosystem (CROGEE), which provides consensus advice to the South Florida Ecosystem Restoration Task Force. The Task Force was established in 1993 and was codified in the 1996 Water Resources Development Act (WRDA); its responsibilities include the development of a comprehensive plan for restoring, preserving and protecting the South Florida ecosystem, and the coordination of related research. The CROGEE works under the auspices of the Water Science and Technology Board and the Board on Environmental Studies and Toxicology of the National Research Council. The CROGEE's mandate includes providing the Task Force not only with scientific overview and technical assessment of the restoration activities and plans, but also providing focused advice on technical topics of importance to the restoration efforts. One such topic was to examine "the linkage between the upstream components of the greater Everglades and adjacent coastal ecosystems." This report addresses this issue by breaking it down into three major questions: What is the present state of knowledge of Florida Bay ("the Bay") on scientific issues that relate to the success of the overall CERP? What are the potential long-term effects of Everglades restoration as currently designed on the nature and condition of the Bay? What are the critical science questions that should be answered early in the restoration process to design a system that benefits not only the terrestrial and freshwater aquatic Everglades but the Bay as well? This study was inspired in part by the 2001 Florida Bay and Adjacent Marine Systems Science Conference held on April 23-26, 2001 in Key Largo, Florida. An overlapping meeting of the CROGEE was held at the same location on April 26-28, 2001. The conference was organized by the Program Management Committee (PMC) of the Florida Bay and Adjacent Marine Systems Science Program. The PMC organized the conference around five questions suggested by the Florida Bay Science Oversight Panel. These questions related to circulation, salinity patterns, and outflows of the Bay; nutrients and the nutrient budget; onset, persistence and fate of planktonic algal blooms; temporal and spatial changes in seagrasses and the hardbottom community; and recruitment, growth and survivorship of higher trophic level species. Some of these issues are discussed in the present report. However, as noted earlier, this report focuses on the subset of questions that relate to linkages between the Bay and the upstream portion of the Everglades system that arose at the 2001 Florida Bay Conference.
The report evaluates the plan to monitor and assess the condition of Florida's Everglades as restoration efforts proceed. The report finds that the plan is well grounded in scientific theory and principals of adaptive management. However, steps should be taken to ensure that information from those monitoring the ecology of the Everglades is readily available to those implementing the overall restoration effort. Also, the plan needs to place greater consideration on how population growth and land-use changes will affect the restoration effort and vice versa.
The report reviews a U.S. Department of the Interior research program, finding that it provides key information to support the restoration of the Florida Everglades and to better assess the impact of hydrologic change on the ecosystem. However, the program needs more funding, better management and broader distribution of its findings. The report suggests that strategic investments in Everglades research will increase the chances of reaching restoration goals while reducing overall costs.
This report is a product of the Committee on Restoration of the Greater Everglades Ecosystem (CROGEE), which provides consensus advice to the South Florida Ecosystem Restoration Task Force. The Task Force was established in 1993 and was codified in the 1996 Water Resources Development Act (WRDA); its responsibilities include the development of a comprehensive plan for restoring, preserving and protecting the South Florida ecosystem, and the coordination of related research. The CROGEE works under the auspices of the Water Science and Technology Board and the Board on Environmental Studies and Toxicology of the National Research Council. The CROGEE's mandate includes providing the Task Force not only with scientific overview and technical assessment of the restoration activities and plans, but also providing focused advice on technical topics of importance to the restoration efforts. One such topic was to examine "the linkage between the upstream components of the greater Everglades and adjacent coastal ecosystems." This report addresses this issue by breaking it down into three major questions: What is the present state of knowledge of Florida Bay ("the Bay") on scientific issues that relate to the success of the overall CERP? What are the potential long-term effects of Everglades restoration as currently designed on the nature and condition of the Bay? What are the critical science questions that should be answered early in the restoration process to design a system that benefits not only the terrestrial and freshwater aquatic Everglades but the Bay as well? This study was inspired in part by the 2001 Florida Bay and Adjacent Marine Systems Science Conference held on April 23-26, 2001 in Key Largo, Florida. An overlapping meeting of the CROGEE was held at the same location on April 26-28, 2001. The conference was organized by the Program Management Committee (PMC) of the Florida Bay and Adjacent Marine Systems Science Program. The PMC organized the conference around five questions suggested by the Florida Bay Science Oversight Panel. These questions related to circulation, salinity patterns, and outflows of the Bay; nutrients and the nutrient budget; onset, persistence and fate of planktonic algal blooms; temporal and spatial changes in seagrasses and the hardbottom community; and recruitment, growth and survivorship of higher trophic level species. Some of these issues are discussed in the present report. However, as noted earlier, this report focuses on the subset of questions that relate to linkages between the Bay and the upstream portion of the Everglades system that arose at the 2001 Florida Bay Conference.
The Florida Everglades is a large and diverse aquatic ecosystem that has been greatly altered over the past century by an extensive water control infrastructure designed to increase agricultural and urban economic productivity. The Comprehensive Everglades Restoration Plan (CERP), launched in 2000, is a joint effort led by the state and federal government to reverse the decline of the ecosystem. Increasing water storage is a critical component of the restoration, and the CERP included projects that would drill over 330 aquifer storage and recovery (ASR) wells to store up to 1.65 billion gallons per day in porous and permeable units in the aquifer system during wet periods for recovery during seasonal or longer-term dry periods. To address uncertainties regarding regional effects of large-scale ASR implementation in the Everglades, the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District conducted an 11-year ASR Regional Study, with focus on the hydrogeology of the Floridan aquifer system, water quality changes during aquifer storage, possible ecological risks posed by recovered water, and the regional capacity for ASR implementation. At the request of the USACE, Review of the Everglades Aquifer Storage and Recovery Regional Study reviews the ASR Regional Study Technical Data Report and assesses progress in reducing uncertainties related to full-scale CERP ASR implementation. This report considers the validity of the data collection and interpretation methods; integration of studies; evaluation of scaling from pilot-to regional-scale application of ASR; and the adequacy and reliability of the study as a basis for future applications of ASR.
The report reviews a comprehensive research plan on Everglades restoration drafted by federal and Florida officials that assesses a central feature of the restoration: a proposal to drill more than 300 wells funneling up to 1.7 billion gallons of water a day into underground aquifers, where it would be stored and then pumped back to the surface to replenish the Everglades during dry periods. The report says that the research plan goes a long way to providing information needed to settle remaining technical questions and clearly responds to suggestions offered by scientists in Florida and in a previous report by the Research Council.
Nearly thirty years ago the Florida Keys were designated as an Area of Critical State Concern. The state recognized that Monroe County contained many valuable natural, environmental, historical, and economic resources that required thoughtful management. In 1996, as a result of many years of discussion, negotiation, and litigation, the Florida Administration Commission issued an Executive Order requiring the preparation of a "carrying capacity analysis" for the Florida Keys. To fulfill this requirement, the U.S. Army Corps of Engineers and the Florida Department of Community Affairs jointly sponsored the Florida Keys Carrying Capacity Study (FKCCS). The key component of this study is a carrying capacity analysis model (CCAM) that provides a technical tool for state and local jurisdictions to "determine the ability of the Florida Keys ecosystem, and the various segments thereof, to withstand all impacts of additional land development activities." This National Research Council (NRC) report provides a critical review of the Florida Keys Carrying Capacity Study: Test Carrying Capacity Analysis Model, First Draft, hereafter referred to as the Draft CCAM. This independent review offers critical commentary in order to assist the sponsors and contractors in making final adjustments to their report and the Carrying Capacity Analysis Model.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.