The Florida Everglades is a large and diverse aquatic ecosystem that has been greatly altered over the past century by an extensive water control infrastructure designed to increase agricultural and urban economic productivity. The Comprehensive Everglades Restoration Plan (CERP), launched in 2000, is a joint effort led by the state and federal government to reverse the decline of the ecosystem. Increasing water storage is a critical component of the restoration, and the CERP included projects that would drill over 330 aquifer storage and recovery (ASR) wells to store up to 1.65 billion gallons per day in porous and permeable units in the aquifer system during wet periods for recovery during seasonal or longer-term dry periods. To address uncertainties regarding regional effects of large-scale ASR implementation in the Everglades, the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District conducted an 11-year ASR Regional Study, with focus on the hydrogeology of the Floridan aquifer system, water quality changes during aquifer storage, possible ecological risks posed by recovered water, and the regional capacity for ASR implementation. At the request of the USACE, Review of the Everglades Aquifer Storage and Recovery Regional Study reviews the ASR Regional Study Technical Data Report and assesses progress in reducing uncertainties related to full-scale CERP ASR implementation. This report considers the validity of the data collection and interpretation methods; integration of studies; evaluation of scaling from pilot-to regional-scale application of ASR; and the adequacy and reliability of the study as a basis for future applications of ASR.
The Florida Everglades is a large and diverse aquatic ecosystem that has been greatly altered over the past century by an extensive water control infrastructure designed to increase agricultural and urban economic productivity. The Comprehensive Everglades Restoration Plan (CERP), launched in 2000, is a joint effort led by the state and federal government to reverse the decline of the ecosystem. Increasing water storage is a critical component of the restoration, and the CERP included projects that would drill over 330 aquifer storage and recovery (ASR) wells to store up to 1.65 billion gallons per day in porous and permeable units in the aquifer system during wet periods for recovery during seasonal or longer-term dry periods. To address uncertainties regarding regional effects of large-scale ASR implementation in the Everglades, the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District conducted an 11-year ASR Regional Study, with focus on the hydrogeology of the Floridan aquifer system, water quality changes during aquifer storage, possible ecological risks posed by recovered water, and the regional capacity for ASR implementation. At the request of the USACE, Review of the Everglades Aquifer Storage and Recovery Regional Study reviews the ASR Regional Study Technical Data Report and assesses progress in reducing uncertainties related to full-scale CERP ASR implementation. This report considers the validity of the data collection and interpretation methods; integration of studies; evaluation of scaling from pilot-to regional-scale application of ASR; and the adequacy and reliability of the study as a basis for future applications of ASR.
The Everglades ecosystem is vast, stretching more than 200 miles from Orlando to Florida Bay, and Everglades National Park is but a part located at the southern end. During the 19th and 20th centuries, the historical Everglades has been reduced to half of its original size, and what remains is not the pristine ecosystem many image it to be, but one that has been highly engineered and otherwise heavily influenced, and is intensely managed by humans. Rather than slowly flowing southward in a broad river of grass, water moves through a maze of canals, levees, pump stations, and hydraulic control structures, and a substantial fraction is diverted from the natural system to meet water supply and flood control needs. The water that remains is polluted by phosphorus and other contaminants originating from agriculture and other human activities. Many components of the natural system are highly degraded and continue to degrade. Progress Toward Restoring the Everglades is the sixth biennial review of progress made in meeting the goals of the Comprehensive Everglades Restoration Plan (CERP). This complex, multibillion-dollar project to protect and restore the remaining Everglades has a 30-40 year timeline. This report assesses progress made in the various separate project components and discusses specific scientific and engineering issues that may impact further progress. According to Progress Toward Restoring the Everglades, a dedicated source of funding could provide ongoing long-term system-wide monitoring and assessment that is critical to meeting restoration objectives. This report examines the implications of knowledge gained and changes in widely accepted scientific understanding regarding pre-drainage hydrology, climate change, and the feasibility of water storage since the CERP was developed.
The report reviews a comprehensive research plan on Everglades restoration drafted by federal and Florida officials that assesses a central feature of the restoration: a proposal to drill more than 300 wells funneling up to 1.7 billion gallons of water a day into underground aquifers, where it would be stored and then pumped back to the surface to replenish the Everglades during dry periods. The report says that the research plan goes a long way to providing information needed to settle remaining technical questions and clearly responds to suggestions offered by scientists in Florida and in a previous report by the Research Council.
Although the progress of environmental restoration projects in the Florida Everglades remains slow overall, there have been improvements in the pace of restoration and in the relationship between the federal and state partners during the last two years. However, the importance of several challenges related to water quantity and quality have become clear, highlighting the difficulty in achieving restoration goals for all ecosystem components in all portions of the Everglades. Progress Toward Restoring the Everglades explores these challenges. The book stresses that rigorous scientific analyses of the tradeoffs between water quality and quantity and between the hydrologic requirements of Everglades features and species are needed to inform future prioritization and funding decisions.
Twelve years into the Comprehensive Everglades Restoration Project, little progress has been made in restoring the core of the remaining Everglades ecosystem; instead, most project construction so far has occurred along its periphery. To reverse ongoing ecosystem declines, it will be necessary to expedite restoration projects that target the central Everglades, and to improve both the quality and quantity of the water in the ecosystem. The new Central Everglades Planning Project offers an innovative approach to this challenge, although additional analyses are needed at the interface of water quality and water quantity to maximize restoration benefits within existing legal constraints. Progress Toward Restoring the Everglades: The Fourth Biennial Review, 2012 explains the innovative approach to expedite restoration progress and additional rigorous analyses at the interface of water quality and quantity will be essential to maximize restoration benefits.
Aquifer storage and recovery (ASR) is a process by which water is recharged through wells to an aquifer and extracted for beneficial use at some later time from the same wells. ASR is proposed as a major water storage component in the Comprehensive Everglades Restoration Plan (CERP), developed jointly by the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District (SFWMD). The plan would use the Upper Floridan aquifer (UFA) to store as much as 1.7 billion gallons per day (gpd) (6.3 million m3/day) of excess surface water and shallow groundwater during wet periods for recovery during seasonal or longer-term dry periods, using about 333 wells. ASR represents about one-fifth of the total estimated cost of the CERP. Aquifer Storage and Recovery in the Comprehensive Everglades Restoration Plan examines pilot project from the perspective of adaptive assessment, i.e., the extent to which the pilot projects will contribute to process understanding that can improve design and implementation of restoration project components. This report is a critique of the pilot projects and related studies.
Growing demands for water in many parts of the nation are fueling the search for new approaches to sustainable water management, including how best to store water. Society has historically relied on dams and reservoirs, but problems such as high evaporation rates and a lack of suitable land for dam construction are driving interest in the prospect of storing water underground. Managed underground storage should be considered a valuable tool in a water manager's portfolio, although it poses its own unique challenges that need to be addressed through research and regulatory measures.
The report reviews a U.S. Department of the Interior research program, finding that it provides key information to support the restoration of the Florida Everglades and to better assess the impact of hydrologic change on the ecosystem. However, the program needs more funding, better management and broader distribution of its findings. The report suggests that strategic investments in Everglades research will increase the chances of reaching restoration goals while reducing overall costs.
The Water Science and Technology Board and the Board on Environmental Studies and Toxicology have released the seventh and final report of the Committee on Restoration of the Greater Everglades Ecosystem, which provides consensus advice to the South Florida Ecosystem Restoration Task Force on various scientific and technical topics. Human settlements and flood-control structures have significantly reduced the Everglades, which once encompassed over three million acres of slow-moving water enriched by a diverse biota. To remedy the degradation of the Everglades, a comprehensive Everglades Restoration Plan was formulated in 1999 with the goal of restoring the original hydrologic conditions of its remaining natural ecosystem. A major feature of this plan is providing enough storage capacity to meet human needs while also providing the needs of the greater Everglades ecosystem. This report reviews and evaluates not only storage options included in the Restoration Plan but also other options not considered in the Plan. Along with providing hydrologic and ecological analyses of the size, location and functioning of water storage components, the report also discusses and makes recommendations on related critical factors, such as timing of land acquisition, intermediate states of restoration, and tradeoffs among competing goals and ecosystem objectives.
The report evaluates the plan to monitor and assess the condition of Florida's Everglades as restoration efforts proceed. The report finds that the plan is well grounded in scientific theory and principals of adaptive management. However, steps should be taken to ensure that information from those monitoring the ecology of the Everglades is readily available to those implementing the overall restoration effort. Also, the plan needs to place greater consideration on how population growth and land-use changes will affect the restoration effort and vice versa.
Aquifer storage and recovery (ASR) is a process by which water is recharged through wells to an aquifer and extracted for beneficial use at some later time from the same wells. ASR is proposed as a major water storage component in the Comprehensive Everglades Restoration Plan (CERP), developed jointly by the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District (SFWMD). The plan would use the Upper Floridan aquifer (UFA) to store as much as 1.7 billion gallons per day (gpd) (6.3 million m3/day) of excess surface water and shallow groundwater during wet periods for recovery during seasonal or longer-term dry periods, using about 333 wells. ASR represents about one-fifth of the total estimated cost of the CERP. Aquifer Storage and Recovery in the Comprehensive Everglades Restoration Plan examines pilot project from the perspective of adaptive assessment, i.e., the extent to which the pilot projects will contribute to process understanding that can improve design and implementation of restoration project components. This report is a critique of the pilot projects and related studies.
The Edwards Aquifer in south-central Texas is the primary source of water for one of the fastest growing cities in the United States, San Antonio, and it also supplies irrigation water to thousands of farmers and livestock operators. It is also is the source water for several springs and rivers, including the two largest freshwater springs in Texas that form the San Marcos and Comal Rivers. The unique habitat afforded by these spring-fed rivers has led to the development of species that are found in no other locations on Earth. Due to the potential for variations in spring flow caused by both human and natural causes, these species are continuously at risk and have been recognized as endangered under the federal Endangered Species Act(ESA). In an effort to manage the river systems and the aquifer that controls them, the Edwards Aquifer Authority and stakeholders have developed a Habitat Conservation Plan (HCP). The HCP seeks to effectively manage the river-aquifer system to ensure the viability of the ESA-listed species in the face of drought, population growth, and other threats to the aquifer. The National Research Council was asked to assist in this process by reviewing the activities around implementing the HCP. Review of the Edwards Aquifer Habitat Conservation Plan: Report 2 reviews the progress in implementing the recommendations from the Committee's first report, seeking to clarify and provide additional support for implementation efforts where appropriate. The current report also reviews selected Applied Research projects and minimization and mitigation measures to help ensure their effectiveness in benefiting the listed species.
The Edwards Aquifer in south-central Texas is the primary source of water for one of the fastest growing cities in the United States, San Antonio, and it also supplies irrigation water to thousands of farmers and livestock operators. It is also is the source water for several springs and rivers, including the two largest freshwater springs in Texas that form the San Marcos and Comal Rivers. The unique habitat afforded by these spring-fed rivers has led to the development of species that are found in no other locations on Earth. Due to the potential for variations in spring flow caused by both human and natural causes, these species are continuously at risk and have been recognized as endangered under the federal Endangered Species Act (ESA). In an effort to manage the river systems and the aquifer that controls them, the Edwards Aquifer Authority and stakeholders have developed a Habitat Conservation Plan (HCP). The HCP seeks to effectively manage the river-aquifer system to ensure the viability of the ESA-listed species in the face of drought, population growth, and other threats to the aquifer. The National Research Council was asked to assist in this process by reviewing the activities around implementing the HCP. Review of the Edwards Aquifer Habitat Conservation Plan: Report 1 is the first stage of a three-stage study. This report reviews the scientific efforts that are being conducted to help build a better understanding of the river-aquifer system and its relationship to the ESA-listed species. These efforts, which include monitoring and modeling as well as research on key uncertainties in the system, are designed to build a better understanding of how best to manage and protect the system and the endangered species. Thus, the current report is focused specifically on a review of the hydrologic modeling, the ecological modeling, the water quality and biological monitoring, and the Applied Research Program. The fundamental question that Review of the Edwards Aquifer Habitat Conservation Plan: Report 1 addresses is whether the scientific initiatives appropriately address uncertainties and fill knowledge gaps in the river-aquifer system and the species of concern. It is hoped that the successful completion of these scientific initiatives will ultimately lead the Edwards Aquifer Authority to an improved understanding of how to manage the system and protect these species.
This report is the first in a congressionally mandated series of biennial evaluations of the progress being made by the Comprehensive Everglades Restoration Plan (CERP), a multibillion-dollar effort to restore historical water flows to the Everglades and return the ecosystem closer to its natural state, before it was transformed by drainage and by urban and agricultural development. The Restoration plan, which was launched in 1999 by the U.S. Army Corps of Engineers and the South Florida Water Management District, includes more than 40 major projects that are expected to be completed over the next three decades. The report finds that progress has been made in developing the scientific basis and management structures needed to support a massive effort to restore the Florida Everglades ecosystem. However, some important projects have been delayed due to several factors including budgetary restrictions and a project planning process that that can be stalled by unresolved scientific uncertainties. The report outlines an alternative approach that can help the initiative move forward even as it resolves remaining scientific uncertainties. The report calls for a boost in the rate of federal spending if the restoration of Everglades National Park and other projects are to be completed on schedule.
The Edwards Aquifer in south-central Texas is the primary source of water for one of the fastest growing cities in the United States, San Antonio, and it also supplies irrigation water to thousands of farmers and livestock operators. It is also the source water for several springs and rivers, including the two largest freshwater springs in Texas that form the San Marcos and Comal Rivers. The unique habitat afforded by these spring-fed rivers has led to the development of species that are found in no other locations on Earth. Due to the potential for variations in spring flow caused by both human and natural causes, these species are continuously at risk and have been recognized as endangered under the federal Endangered Species Act (ESA). In an effort to manage the river systems and the aquifer that controls them, the Edwards Aquifer Authority (EAA) and stakeholders have developed a Habitat Conservation Plan (HCP). The HCP seeks to effectively manage the river-aquifer system to ensure the viability of the ESA-listed species in the face of drought, population growth, and other threats to the aquifer. This report is the third and final product of a three-phase study to provide advice to the EAA on various aspects of the HCP that will ultimately lead to improved management of the Edwards Aquifer. This final report focuses on the biological goals and objectives found in the HCP for each of the listed species.
The U.S. Army Corps of Engineers has a long history of managing navigation, floods, and other water-related issues on the Upper Mississippi and Illinois Rivers. A recent chapter in that history is the problem of waterway congestion at several locks on the lower portion of the Upper Mississippi River. The Corps has studied this problem and its possible solutions since the late 1980s, producing a draft feasibility study in 2000 and an interim report on a restructured feasibility study in 2002. A committee was convened to review and provide advice on the most recent phase of the Corps' analytical efforts.
Water is our most fundamental natural resource, a resource that is limited. Challenges to our nation's water resources continue to grow, driven by population growth, ecological needs, climate change, and other pressures. The nation needs more and improved water science and information to meet these challenges. Toward a Sustainable and Secure Water Future reviews the United States Geological Survey's (USGS) Water Resource Discipline (WRD), one of the nation's foremost water science organizations. This book provides constructive advice to help the WRD meet the nation's water needs over the coming decades. Of interest primarily to the leadership of the USGS WRD, many findings and recommendations also target the USGS leadership and the Department of Interior (DOI), because their support is necessary for the WRD to respond to the water needs of the nation.
The U.S. Army Corps of Engineers has a long history of managing navigation, floods, and other water-related issues on the Upper Mississippi and Illinois Rivers. A recent chapter in that history is the problem of waterway congestion at several locks on the lower portion of the Upper Mississippi River. The Corps has studied this problem and its possible solutions since the late 1980s, producing a draft feasibility study in 2000 and an interim report on a restructured feasibility study in 2002. A committee was convened to review and provide advice on the most recent phase of the Corps' analytical efforts.
The Edwards Aquifer in south-central Texas is the primary source of water for one of the fastest growing cities in the United States, San Antonio, and it also supplies irrigation water to thousands of farmers and livestock operators. It is also the source water for several springs and rivers, including the two largest freshwater springs in Texas that form the San Marcos and Comal Rivers. The unique habitat afforded by these spring-fed rivers has led to the development of species that are found in no other locations on Earth. Due to the potential for variations in spring flow caused by both human and natural causes, these species are continuously at risk and have been recognized as endangered under the federal Endangered Species Act (ESA). In an effort to manage the river systems and the aquifer that controls them, the Edwards Aquifer Authority (EAA) and stakeholders have developed a Habitat Conservation Plan (HCP). The HCP seeks to effectively manage the river-aquifer system to ensure the viability of the ESA-listed species in the face of drought, population growth, and other threats to the aquifer. This report is the third and final product of a three-phase study to provide advice to the EAA on various aspects of the HCP that will ultimately lead to improved management of the Edwards Aquifer. This final report focuses on the biological goals and objectives found in the HCP for each of the listed species"--Publisher's description
The U.S. Army Corps of Engineers (Corps) is responsible for construction, operations, and maintenance of much of the nation's water resources infrastructure. This infrastructure includes flood control levees, multi-purpose dams, locks, navigation channels, port and harbor facilities, and beach protection infrastructure. The Corps of Engineers also regulates the dredging and filling of wetlands subject to federal jurisdictions. Along with its programs for flood damage reduction and support of commercial navigation, ecosystem restoration was added as a primary Corps mission area in 1996. The National Research Council (NRC) Committee on U.S. Army Corps of Engineers on Water Resources Science, Engineering, and Planning was convened by the NRC at the request of the Corps of Engineers to provide independent advice to the Corps on an array of strategic and planning issues. National Water Resources Challenges Facing the U.S. Army Corps of Engineers surveys the key water resources challenges facing the Corps, the limits of what might be expected today from the Corps, and future prospects for the agency. This report presents several findings, but no recommendations, to the Corps of Engineers based on initial investigations and discussions with Corps leadership. National Water Resources Challenges Facing the U.S. Army Corps of Engineers can serve as a foundational resource for the Corps of Engineers, U.S. Congress, federal agencies, and Corps project co-sponsors, among others.
Research Needs in Subsurface Science provides an overview of the subsurface contamination problems across the DOE complex and shows by examples from the six largest DOE sites (Hanford Site, Idaho Engineering and Environmental Laboratory, Nevada Test Site, Oak Ridge Reservation, Rocky Flats Environmental Technology Site, and Savannah River Site) how advances in scientific and engineering knowledge can improve the effectiveness of the cleanup effort. This report analyzes the current Environmental Management (EM) Science Program portfolio of subsurface research projects to assess the extent to which the program is focused on DOE's contamination problems. This analysis employs an organizing scheme that provides a direct linkage between basic research in the EM Science Program and applied technology development in DOE's Subsurface Contaminants Focus Area. Research Needs in Subsurface Science also reviews related research programs in other DOE offices and other federal agencies (see Chapter 4) to determine the extent to which they are focused on DOE's subsurface contamination problems. On the basis of these analyses, this report singles out the highly significant subsurface contamination knowledge gaps and research needs that the EM Science Program must address if the DOE cleanup program is to succeed.
The U.S. Army Corps of Engineers has long been one of the federal government's key agencies in planning the uses of the nation's waterways and water resources. Though responsible for a range of water-related programs, the Corps's two traditional programs have been flood damage reduction and navigation enhancement. The water resource needs of the nation, however, have for decades been shifting away from engineered control of watersheds toward restoration of ecosystem services and natural hydrologic variability. In response to these shifting needs, legislation was enacted in 1990 which initiated the Corps's involvement in ecological restoration, which is now on par with the Corps's traditional flood damage reduction and navigation roles. This book provides an analysis of the Corps's efforts in ecological restoration, and provides broader recommendations on how the corps might streamline their planning process. It also assesses the impacts of federal legislation on the Corps planning and projects, and provides recommendations on how relevant federal policies might be altered in order to improve Corps planning. Another important shift affecting the Corps has been federal cost-sharing arrangements (enacted in 1986), mandating greater financial participation in Corps water projects by local co-sponsors. The book describes how this has affected the Corps-sponsor relationship, and comments upon how each group must adjust to new planning and political realities.
Losses of life and property in the United States-and throughout the world-resulting from hydrologic hazards, including floods, droughts, and related phenomena, are significant and increasing. Public awareness of, and federal attention to, natural disaster reduction, with a focus on mitigation or preparedness so as to minimize the impacts of such events, have probably never been greater than at present. With over three-quarters of federal disaster declarations resulting from water-related events, national interest in having the best-possible hydrologic data, information, and knowledge as the basis for assessment and reduction of risks from hydrologic hazards is clear. The U.S. Geological Survey (USGS) plays a variety of unique and critical roles relevant to hydrologic hazard understanding, preparedness, and response. The agency's data collection, research, techniques development, and interpretive studies provide the essential bases for national, state, and local hydrologic hazard risk assessment and reduction efforts. This work includes some of the more traditional activities of the Water Resources Division (e.g., streamflow measurement) and some of the more innovative interdisciplinary activities (e.g., hydrologic research, educational outreach, real-time data transmission, and risk communication) being pursued in cooperation with other divisions of the USGS, other federal and state agencies, and other local entities. This report aims to help shape a strategy and improve the overall framework of USGS efforts in these important areas.
Over the past century, the U.S. Army Corps of Engineers has built a vast network of water management infrastructure that includes approximately 700 dams, 14,000 miles of levees, 12,000 miles of river navigation channels and control structures, harbors and ports, and other facilities. Historically, the construction of new infrastructure dominated the Corps' water resources budget and activities. Today, national water needs and priorities increasingly are shifting to operations, maintenance, and rehabilitation of existing infrastructure, much of which has exceeded its design life. However, since the mid-1980s federal funding for new project construction and major rehabilitation has declined steadily. As a result, much of the Corps' water resources infrastructure is deteriorating and wearing out faster than it is being replaced. Corps of Engineers Water Resources Infrastrucutre: Deterioration, Investment, or Divestment? explores the status of operations, maintenance, and rehabilitation of Corps water resources infrastructure, and identifies options for the Corps and the nation in setting maintenance and rehabilitation priorities.
Each year, the Gulf Research Program (GRP) produces an annual report to summarize how funds were used. These reports review accomplishments, highlight activities, and, over time, will assess metrics to determine how the program is progressing in accomplishing its goals. The 2018 annual report is the fifth report in this series. The GRP is an independent, science-based program founded in 2013. Through grants, fellowships, and other activities, it seeks to enhance oil system safety and the protection of human health and the environment in the Gulf of Mexico region and other areas along the U.S. outer continental shelf with offshore oil and gas operations. This report captures key developments and successes in 2018. The GRP continues to build on its past work and seeks to learn, think about, and plan for how and where it can have the greatest cumulative and lasting impacts.
The Gulf Research Program: A Strategic Vision establishes the Program's foundation and introduces its mission, goals, and objectives. It describes some initial activities and sets out the Program's vision for contributing lasting benefit to the Gulf region and the nation. The Program is an extraordinary opportunity to foster science on a regional scale and over the long term. In 2010 the Deepwater Horizon explosion and fire in the Gulf of Mexico caused the largest offshore oil spill in U.S. history, resulting in significant impacts on the region's environment and residents. Legal settlements with the companies held responsible led the federal government to ask the National Academy of Sciences to form and administer a 30-year program to enhance oil system safety, human health, and environmental resources in the Gulf of Mexico and other U.S. continental shelf areas where offshore oil and gas exploration and production occur or are under consideration. The new Gulf Research Program will receive $500 million to support activities using three broad approaches: research and development, education and training, and environmental monitoring."--
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.