TRB has released the final version of TRB Special Report 308: The Safety Promise and Challenge of Automotive Electronics: Insights from Unintended Acceleration, which examines how the National Highway Traffic Safety Administration (NHTSA) regulatory, research, and defect investigation programs can be strengthened to meet the safety assurance and oversight challenges arising from the expanding functionality and use of automotive electronics. The report gives particular attention to the NHTSA response to consumer complaints of vehicles accelerating unintentionally and to concerns that faulty electronic systems may have been to blame. The committee that produced the report found that the increasingly capable and complex electronics systems being added to automobiles present many opportunities for making driving safer but also present new demands for ensuring their safe performance. These safety assurance demands pertain both to the automotive industry development and deployment of electronics systems and to the safety oversight role of NHTSA. With regard to the latter, the committee recommends that NHTSA give explicit consideration to the oversight challenges arising from automotive electronics and that the agency develop and articulate a long term strategy for meeting these challenges."--Provided by publisher.
TRB has released the final version of TRB Special Report 308: The Safety Promise and Challenge of Automotive Electronics: Insights from Unintended Acceleration, which examines how the National Highway Traffic Safety Administration (NHTSA) regulatory, research, and defect investigation programs can be strengthened to meet the safety assurance and oversight challenges arising from the expanding functionality and use of automotive electronics. The report gives particular attention to the NHTSA response to consumer complaints of vehicles accelerating unintentionally and to concerns that faulty electronic systems may have been to blame. The committee that produced the report found that the increasingly capable and complex electronics systems being added to automobiles present many opportunities for making driving safer but also present new demands for ensuring their safe performance. These safety assurance demands pertain both to the automotive industry development and deployment of electronics systems and to the safety oversight role of NHTSA. With regard to the latter, the committee recommends that NHTSA give explicit consideration to the oversight challenges arising from automotive electronics and that the agency develop and articulate a long term strategy for meeting these challenges."--Provided by publisher.
In the past few years, interest in plug-in electric vehicles (PEVs) has grown. Advances in battery and other technologies, new federal standards for carbon-dioxide emissions and fuel economy, state zero-emission-vehicle requirements, and the current administration's goal of putting millions of alternative-fuel vehicles on the road have all highlighted PEVs as a transportation alternative. Consumers are also beginning to recognize the advantages of PEVs over conventional vehicles, such as lower operating costs, smoother operation, and better acceleration; the ability to fuel up at home; and zero tailpipe emissions when the vehicle operates solely on its battery. There are, however, barriers to PEV deployment, including the vehicle cost, the short all-electric driving range, the long battery charging time, uncertainties about battery life, the few choices of vehicle models, and the need for a charging infrastructure to support PEVs. What should industry do to improve the performance of PEVs and make them more attractive to consumers? At the request of Congress, Overcoming Barriers to Deployment of Plug-in Electric Vehicles identifies barriers to the introduction of electric vehicles and recommends ways to mitigate these barriers. This report examines the characteristics and capabilities of electric vehicle technologies, such as cost, performance, range, safety, and durability, and assesses how these factors might create barriers to widespread deployment. Overcoming Barriers to Deployment of Plug-in Electric Vehicles provides an overview of the current status of PEVs and makes recommendations to spur the industry and increase the attractiveness of this promising technology for consumers. Through consideration of consumer behaviors, tax incentives, business models, incentive programs, and infrastructure needs, this book studies the state of the industry and makes recommendations to further its development and acceptance.
The electric vehicle offers many promises-increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)-a part of the National Academies-appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports-a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.
Review of the Research Program of the U.S. DRIVE Partnership: Fourth Report follows on three previous NRC reviews of the FreedomCAR and Fuel Partnership, which was the predecessor of the U.S. DRIVE Partnership (NRC, 2005, 2008a, 2010). The U.S. DRIVE (Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability) vision, according to the charter of the Partnership, is this: American consumers have a broad range of affordable personal transportation choices that reduce petroleum consumption and significantly reduce harmful emissions from the transportation sector. Its mission is as follows: accelerate the development of pre-competitive and innovative technologies to enable a full range of efficient and clean advanced light-duty vehicles (LDVs), as well as related energy infrastructure. The Partnership focuses on precompetitive research and development (R&D) that can help to accelerate the emergence of advanced technologies to be commercialization-feasible. The guidance for the work of the U.S. DRIVE Partnership as well as the priority setting and targets for needed research are provided by joint industry/government technical teams. This structure has been demonstrated to be an effective means of identifying high-priority, long-term precompetitive research needs for each technology with which the Partnership is involved. Technical areas in which research and development as well as technology validation programs have been pursued include the following: internal combustion engines (ICEs) potentially operating on conventional and various alternative fuels, automotive fuel cell power systems, hydrogen storage systems (especially onboard vehicles), batteries and other forms of electrochemical energy storage, electric propulsion systems, hydrogen production and delivery, and materials leading to vehicle weight reductions.
Review of the Research Program of the U.S. DRIVE Partnership: Fifth Report follows on four previous reviews of the FreedomCAR and Fuel Partnership, which was the predecessor of the U.S. DRIVE Partnership. The U.S. DRIVE (Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability) vision, according to the charter of the Partnership, is this: American consumers have a broad range of affordable personal transportation choices that reduce petroleum consumption and significantly reduce harmful emissions from the transportation sector. Its mission is as follows: accelerate the development of pre-competitive and innovative technologies to enable a full range of efficient and clean advanced light-duty vehicles (LDVs), as well as related energy infrastructure. The Partnership focuses on precompetitive research and development (R&D) that can help to accelerate the emergence of advanced technologies to be commercialization-feasible. The guidance for the work of the U.S. DRIVE Partnership as well as the priority setting and targets for needed research are provided by joint industry/government technical teams. This structure has been demonstrated to be an effective means of identifying high-priority, long-term precompetitive research needs for each technology with which the Partnership is involved. Technical areas in which research and development as well as technology validation programs have been pursued include the following: internal combustion engines (ICEs) potentially operating on conventional and various alternative fuels, automotive fuel cell power systems, hydrogen storage systems (especially onboard vehicles), batteries and other forms of electrochemical energy storage, electric propulsion systems, hydrogen production and delivery, and materials leading to vehicle weight reductions.
Explains that the static stability factor is an indicator of a vehicle's propensity to roll over, and that US government ratings for vehicles do not reflect differences in rollover resistance. This report states that the 5-star system should allow discrimination among vehicles and incorporate results from road tests that measure vehicle control.
The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. Transitions to Alternative Transportation Technologies-Plug-in Hybrid Electric Vehicles builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.
This is the most recent report of the National Research Council's Standing Committee to Review the Research Program of the Partnership for a New Generation of Vehicles (PNGV), which has conducted annual reviews of the PNGV program since it was established in late 1993. The PNGV is a cooperative R&D program between the federal government and the United States Council for Automotive Research (USCAR, whose members are DaimlerChrysler, Ford Motor Company, and General Motors) to develop technologies for a new generation of automobiles with up to three times the fuel economy of a 1993 midsize automobile. The reports review major technology development areas (four-stroke direct-injection engines, fuel cells, energy storage, electronic/electrical systems, and structural materials); the overall adequacy of R&D efforts; the systems analysis effort and how it guides decisions on R&D; the progress toward long-range component and system-level cost and performance goals; and efforts in vehicle emissions and advanced materials research and how results target goals. Unlike previous reports, the Seventh Report comments on the goals of the program, since the automotive market and U.S. emission standards have changed significantly since the program was initiated.
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
As national priorities have been focused both on reducing fuel consumption and improving air quality, attention has increased on reducing emissions from many types of vehicles, including light-duty, medium-duty, and heavy-duty diesel-powered vehicles. Meeting the recently promulgated (and proposed) emission standards and simultaneously increasing fuel economy will pose especially difficult challenges for diesel-powered vehicles and will require the development of new emission-reduction technologies. In response to a request from the director of OHVT, the National Research Council formed the Committee on Review of DOE's Office of Heavy Vehicle Technologies to conduct a broad, independent review of its research and development (R&D) activities.
The FreedomCAR and Fuel Partnership is a collaborative effort among the Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), and five major energy companies to manage research that will enable the vision of "a clean and sustainable transportation energy future." It envisions a transition from more efficient internal combustion engines (ICEs), to advanced ICE hybrid electric vehicles, to enabling a private-sector decision by 2015 on hydrogen-fueled vehicle development. This report, which builds on an earlier NRC report, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, presents an evaluation of the Partnership's research efforts on hydrogen-fueled transportation systems, and provides findings and recommendations about technical directions, strategies, funding, and management.
The FreedomCAR and Fuel Partnership is a collaborative effort among the Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), and five major energy companies to manage research that will enable the vision of a clean and sustainable transportation energy future. It envisions a transition from more efficient internal combustion engines (ICEs), to advanced ICE hybrid electric vehicles, and to enabling a private-sector decision by 2015 on hydrogen-fueled vehicle development. At the request of DOE, the NRC has undertaken an effort to provide biennial reviews of the progress of the research program. Phase I of that review was described in a book issued in 2005. This second book presents an assessment of the progress in the research program management areas as well as the responses of program management to recommendations provided in the Phase I report. Covered in this second book are major crosscutting issues; vehicle subsystems; hydrogen production, delivery, and dispensing; and an overall assessment of the program.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.