The development and application of increasingly autonomous (IA) systems for civil aviation is proceeding at an accelerating pace, driven by the expectation that such systems will return significant benefits in terms of safety, reliability, efficiency, affordability, and/or previously unattainable mission capabilities. IA systems range from current automatic systems such as autopilots and remotely piloted unmanned aircraft to more highly sophisticated systems that are needed to enable a fully autonomous aircraft that does not require a pilot or human air traffic controllers. These systems, characterized by their ability to perform more complex mission-related tasks with substantially less human intervention for more extended periods of time, sometimes at remote distances, are being envisioned for aircraft and for air traffic management and other ground-based elements of the national airspace system. Civil aviation is on the threshold of potentially revolutionary improvements in aviation capabilities and operations associated with IA systems. These systems, however, face substantial barriers to integration into the national airspace system without degrading its safety or efficiency. Autonomy Research for Civil Aviation identifies key barriers and suggests major elements of a national research agenda to address those barriers and help realize the benefits that IA systems can make to crewed aircraft, unmanned aircraft systems, and ground-based elements of the national airspace system. This report develops a set of integrated and comprehensive technical goals and objectives of importance to the civil aeronautics community and the nation. Autonomy Research for Civil Aviation will be of interest to U.S. research organizations, industry, and academia who have a role in meeting these goals.
Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.
The U.S. air transportation system is very important for our economic well-being and national security. The nation is also the global leader in civil and military aeronautics, a position that needs to be maintained to help assure a strong future for the domestic and international air transportation system. Strong action is needed, however, to ensure that leadership role continues. To that end, the Congress and NASA requested the NRC to undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. This report presents a set of strategic objectives for the next decade of R&T. It provides a set of high-priority R&T challengesâ€"-characterized by five common themesâ€"-for both NASA and non-NASA researchers, and an analysis of key barriers that must be overcome to reach the strategic objectives. The report also notes the importance of synergies between civil aeronautics R&T objectives and those of national security.
Urges the US Congress to establish a national airport cooperative research program. The committee that produced the report called such a program essential to ensuring airport security, efficiency, safety, and environmental compatibility.
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.
At the request of the Advisory Committee for Geosciences of the National Science Foundation (NSF), a review of the Geospace Section of the NSF Division of Atmospheric and Geospace Sciences was undertaken in 2015. The Portfolio Review Committee was charged with reviewing the portfolio of facilities, research programs, and activities funded by Geospace Section and to recommend critical capabilities and the balance of investments needed to enable the science program articulated in the 2013 NRC decadal survey Solar and Space Physics: A Science for a Technological Society. The Portfolio Review Committee's report Investments in Critical Capabilities for Geospace Science 2016 to 2025 (ICCGS) was accepted by the Advisory Committee for Geosciences in April 2016. Assessment of the National Science Foundation's 2015 Geospace Portfolio Review provides an independent assessment of the ICCGS report. This publication assesses how well the ICCGS provides a clear set of findings, conclusions, and recommendations for Geospace Section that align with the science priorities of the NRC decadal survey, and adequately take into account issues such as the current budget outlook and the science needs of the community. Additionally, this study makes recommendations focused on options and considerations for NSF's implementation of the ICCGS recommendations.
To meet the objectives of the Vision for Space Exploration (VSE), NASA must develop a wide array of enabling technologies. For this purpose, NASA established the Exploration Technology Development Program (ETDP). Currently, ETDP has 22 projects underway. In the report accompanying the House-passed version of the FY2007 appropriations bill, the agency was directed to request from the NRC an independent assessment of the ETDP. This interim report provides an assessment of each of the 22 projects including a quality rating, an analysis of how effectively the research is being carried out, and the degree to which the research is aligned with the VSE. To the extent possible, the identification and discussion of various cross-cutting issues are also presented. Those issues will be explored and discussed in more detail in the final report.
The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions. Based on these predictions, the committee attempted to identify the design, characterization, monitoring, and maintenance issues that are critical for the introduction of advanced materials and structural concepts into future aircraft.
When discussing the risk of introducing drones into the National Airspace System, it is necessary to consider the increase in risk to people in manned aircraft and on the ground as well as the various ways in which this new technology may reduce risk and save lives, sometimes in ways that cannot readily be accounted for with current safety assessment processes. This report examines the various ways that risk can be defined and applied to integrating these Unmanned Aircraft Systems (UAS) into the National Airspace System managed by the Federal Aviation Administration (FAA). It also identifies needs for additional research and developmental opportunities in this field.
Decades of continuous efforts to address known hazards in the national airspace system (NAS) and to respond to issues illuminated by analysis of incidents and accidents have made commercial airlines the safest mode of transportation. The task of maintaining a high level of safety for commercial airlines is complicated by the dynamic nature of the NAS. The number of flights by commercial transports is increasing; air traffic control systems and procedures are being modernized to increase the capacity and efficiency of the NAS; increasingly autonomous systems are being developed for aircraft and ground systems, and small aircraftâ€"most notably unmanned aircraft systemsâ€"are becoming much more prevalent. As the NAS evolves to accommodate these changes, aviation safety programs will also need to evolve to ensure that changes to the NAS do not inadvertently introduce new risks. Real-time system-wide safety assurance (RSSA) is one of six focus areas for the National Aeronautics and Space Administration (NASA) aeronautics program. NASA envisions that an RSSA system would provide a continuum of information, analysis, and assessment that supports awareness and action to mitigate risks to safety. Maintaining the safety of the NAS as it evolves will require a wide range of safety systems and practices, some of which are already in place and many of which need to be developed. This report identifies challenges to establishing an RSSA system and the high-priority research that should be implemented by NASA and other interested parties in government, industry, and academia to expedite development of such a system.
After the completion of the National Research Council (NRC) report, Maintaining U.S. Leadership in Aeronautics: Scenario-Based Strategic Planning for NASA's Aeronautics Enterprise (1997), the National Aeronautics and Space Administration (NASA) Office of Aeronautics and Space Transportation Technology requested that the NRC remain involved in its strategic planning process by conducting a study to identify a short list of revolutionary or breakthrough technologies that could be critical to the 20 to 25 year future of aeronautics and space transportation. These technologies were to address the areas of need and opportunity identified in the above mentioned NRC report, which have been characterized by NASA's 10 goals (see Box ES-1) in "Aeronautics & Space Transportation Technology: Three Pillars for Success" (NASA, 1997). The present study would also examine the 10 goals to determine if they are likely to be achievable, either through evolutionary steps in technology or through the identification and application of breakthrough ideas, concepts, and technologies.
The past decade has delivered remarkable discoveries in the study of exoplanets. Hand-in-hand with these advances, a theoretical understanding of the myriad of processes that dictate the formation and evolution of planets has matured, spurred on by the avalanche of unexpected discoveries. Appreciation of the factors that make a planet hospitable to life has grown in sophistication, as has understanding of the context for biosignatures, the remotely detectable aspects of a planet's atmosphere or surface that reveal the presence of life. Exoplanet Science Strategy highlights strategic priorities for large, coordinated efforts that will support the scientific goals of the broad exoplanet science community. This report outlines a strategic plan that will answer lingering questions through a combination of large, ambitious community-supported efforts and support for diverse, creative, community-driven investigator research.
New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), the report of the 2010 decadal survey of astronomy and astrophysics, put forward a vision for a decade of transformative exploration at the frontiers of astrophysics. This vision included mapping the first stars and galaxies as they emerge from the collapse of dark matter and cold clumps of hydrogen, finding new worlds in a startlingly diverse population of extrasolar planets, and exploiting the vastness and extreme conditions of the universe to reveal new information about the fundamental laws of nature. NWNH outlined a compelling program for understanding the cosmic order and for opening new fields of inquiry through the discovery areas of gravitational waves, time-domain astronomy, and habitable planets. Many of these discoveries are likely to be enabled by cyber-discovery and the power of mathematics, physics, and imagination. To help realize this vision, NWNH recommended a suite of innovative and powerful facilities, along with balanced, strong support for the scientific community engaged in theory, data analysis, technology development, and measurements with existing and new instrumentation. Already in the first half of the decade, scientists and teams of scientists working with these cutting-edge instruments and with new capabilities in data collection and analysis have made spectacular discoveries that advance the NWNH vision. New Worlds, New Horizons: A Midterm Assessment reviews the responses of NASA's Astrophysics program, NSF's Astronomy program, and DOE's Cosmic Frontiers program to NWNH. This report describes the most significant scientific discoveries, technical advances, and relevant programmatic changes in astronomy and astrophysics over the years since the publication of the decadal survey, and assesses how well the Agencies' programs address the strategies, goals, and priorities outlined in the 2010 decadal survey.
In the five decades since NASA was created, the agency has sustained its legacy from the National Advisory Committee on Aeronautics (NACA) in playing a major role in U.S. aeronautics research and has contributed substantially to United States preeminence in civil and military aviation. This preeminence has contributed significantly to the overall economy and balance of trade of the United States through the sales of aircraft throughout the world. NASA's contributions have included advanced flight control systems, de-icing devices, thrust-vectoring systems, wing fuselage drag reduction configurations, aircraft noise reduction, advanced transonic airfoil and winglet designs, and flight systems. Each of these contributions was successfully demonstrated through NASA flight research programs. Equally important, the aircraft industry would not have adopted these and similar advances without NASA flight demonstration on full-scale aircraft flying in an environment identical to that which the aircraft are to operate-in other words, flight research. Flight research is a tool, not a conclusion. It often informs simulation and modeling and wind tunnel testing. Aeronautics research does not follow a linear path from simulation to wind tunnels to flying an aircraft. The loss of flight research capabilities at NASA has therefore hindered the agency's ability to make progress throughout its aeronautics program by removing a primary tool for research. Recapturing NASA's Aeronautics Flight Research Capabilities discusses the motivation for NASA to pursue flight research, addressing the aspects of the committee's task such as identifying the challenges where research program success can be achieved most effectively through flight research. The report contains three case studies chosen to illustrate the state of NASA ARMD. These include the ERA program and the Fundamental Research Program's hypersonics and supersonics projects. Following these case studies, the report describes issues with the NASA ARMD organization and management and offers solutions. In addition, the chapter discusses current impediments to progress, including demonstrating relevancy to stakeholders, leadership, and the lack of focus relative to available resources. Recapturing NASA's Aeronautics Flight Research Capabilities concludes that the type and sophistication of flight research currently being conducted by NASA today is relatively low and that the agency's overall progress in aeronautics is severely constrained by its inability to actually advance its research projects to the flight research stage, a step that is vital to bridging the confidence gap. NASA has spent much effort protecting existing research projects conducted at low levels, but it has not been able to pursue most of these projects to the point where they actually produce anything useful. Without the ability to actually take flight, NASA's aeronautics research cannot progress, cannot make new discoveries, and cannot contribute to U.S. aerospace preeminence.
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.
Deregulation, higher costs, foreign competition, and financial risks are causing profound changes in civil aviation. These trends are reviewed along with growing federal involvement in trade, technology transfer, technological developments in airframes and propulsion, and military-civil aviation relationships. Policy options to preserve the strength and effectiveness of civil aircraft manufacturing are offered.
Advanced aerial mobility is a newly emerging industry that aims to develop and operate new air vehicles potentially capable of safe, reliable, and low-noise vertical flight. The world has seen a recent increase in the adoption of electric vertical lift aircraft for urban, suburban and rural operations. These new innovations and technologies change the way that we move cargo and people, affecting industries across the economy. These changes will challenge today's airspace monitoring systems and regulatory environment. The U.S. government and its regulatory agencies need technical guidance to facilitate the development of these technologies, and to create the regulatory framework to foster the growth of this vertical flight industry to the benefit of the aviation industry. Advancing Aerial Mobility evaluates the potential benefits and challenges associated with this emerging industry. This report provides recommendations that seek to foster an environment in which the nation can maintain its leading position in developing, deploying, and embracing these new technologies. This publication presents a national vision for advanced aerial mobility, market evolution, and safety and security management.
In 2006, the NRC published a Decadal Survey of Civil Aeronautics: Foundation for the Future, which set out six strategic objectives for the next decade of civil aeronautics research and technology. To determine how NASA is implementing the decadal survey, Congress mandated in the National Aeronautics and Space Administration Act of 2005 that the NRC carry out a review of those efforts. Among other things, this report presents an assessment of how well NASA's research portfolio is addressing the recommendations and high priority R&T challenges identified in the Decadal Survey; how well NASA's aeronautic research portfolio is addressing the aeronautics research requirements; and whether the nation will have the skilled workforce and research facilities to meet the first two items.
In response to the Chief of Naval Operations (CNO), the National Research Council appointed a committee operating under the auspices of the Naval Studies Board to study the national security implications of climate change for U.S. naval forces. In conducting this study, the committee found that even the most moderate current trends in climate, if continued, will present new national security challenges for the U.S. Navy, Marine Corps, and Coast Guard. While the timing, degree, and consequences of future climate change impacts remain uncertain, many changes are already underway in regions around the world, such as in the Arctic, and call for action by U.S. naval leadership in response. The terms of reference (TOR) directed that the study be based on Intergovernmental Panel on Climate Change (IPCC) scenarios and other peer-reviewed assessment. Therefore, the committee did not address the science of climate change or challenge the scenarios on which the committee's findings and recommendations are based. National Security Implications of Climate Change for U.S. Naval Forces addresses both the near- and long-term implications for U.S. naval forces in each of the four areas of the TOR, and provides corresponding findings and recommendations. This report and its conclusions are organized around six discussion areas-all presented within the context of a changing climate.
NASA's Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMD's four divisionsâ€"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as "flagships." Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.
For the National Aeronautics and Space Administration (NASA) to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary. NASA has developed a set of 14 draft roadmaps to guide the development of such technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each roadmap focuses on a particular technology area. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The success of OCT's technology development program is essential, because technological breakthroughs have long been the foundation of NASA's successes, from its earliest days, to the Apollo program, to a vast array of space science missions and the International Space Station. An Interim Report of NASA's Technology Roadmap identifies some gaps in the technologies included in the individual roadmaps. The report suggests that the effectiveness of the NASA space technology program can be enhanced by employing proven management practices and principles including increasing program stability, addressing facility issues, and supporting adequate flight tests of new technologies. This interim report provides several additional observations that will be expanded on in the final report to be released in 2012.
The United States has publicly funded its human spaceflight program on a continuous basis for more than a half-century, through three wars and a half-dozen recessions, from the early Mercury and Gemini suborbital and Earth orbital missions, to the lunar landings, and thence to the first reusable winged crewed spaceplane that the United States operated for three decades. Today the United States is the major partner in a massive orbital facility - the International Space Station - that is becoming the focal point for the first tentative steps in commercial cargo and crewed orbital space flights. And yet, the long-term future of human spaceflight beyond this project is unclear. Pronouncements by multiple presidents of bold new ventures by Americans to the Moon, to Mars, and to an asteroid in its native orbit, have not been matched by the same commitment that accompanied President Kennedy\'s now fabled 1961 speech-namely, the substantial increase in NASA funding needed to make it happen. Are we still committed to advancing human spaceflight? What should a long-term goal be, and what does the United States need to do to achieve it? Pathways to Exploration explores the case for advancing this endeavor, drawing on the history of rationales for human spaceflight, examining the attitudes of stakeholders and the public, and carefully assessing the technical and fiscal realities. This report recommends maintaining the long-term focus on Mars as the horizon goal for human space exploration. With this goal in mind, the report considers funding levels necessary to maintain a robust tempo of execution, current research and exploration projects and the time/resources needed to continue them, and international cooperation that could contribute to the achievement of spaceflight to Mars. According to Pathways to Exploration, a successful U.S. program would require sustained national commitment and a budget that increases by more than the rate of inflation. In reviving a U.S. human exploration program capable of answering the enduring questions about humanity's destiny beyond our tiny blue planet, the nation will need to grapple with the attitudinal and fiscal realities of the nation today while staying true to a small but crucial set of fundamental principles for the conduct of exploration of the endless frontier. The recommendations of Pathways to Exploration provide a clear map toward a human spaceflight program that inspires students and citizens by furthering human exploration and discovery, while taking into account the long-term commitment necessary to achieve this goal.
Presents the results of a research project to develop a graphics design manual describing the use of signs and symbols which provide for the safe, secure, and efficient movement of passengers to and through transit facilities.
During 1988, the National Research Council's Space Science Board reorganized itself to more effectively address NASA's advisory needs. The Board's scope was broadened: it was renamed the Space Studies Board and, among other new initiatives, the Committee on Human Exploration was created. The new committee was intended to focus on the scientific aspects of human exploration programs, rather than engineering issues. Their research led to three reports: Scientific Prerequisites for the Human Exploration of Space published in 1993, Scientific Opportunities in the Human Exploration of Space published in 1994, and Science Management in the Human Exploration of Space published in 1997. These three reports are collected and reprinted in this volume in their entirety as originally published.
The purpose of the Transportation Research Board (TRB) Symposium on Motor Carrier Transportation was to provide a forum for an international audience on motor carrier transportation issues involving government policy makers and regulators, researchers, academia, and representatives of the large truck goods industry, including suppliers, manufacturers, and motor carriers. The symposium focused on a wide range of technical, economic, safety, and environmental issues, as well as on the opportunities for greater efficiency and productivity for the motor carrier transportation community into the 21st century. The symposium was intended to foster productive communication among groups representing various disciplines in the private and public sectors whose problems and issues related to the motor carrier industry often conflict or coincide.
The Federal Aviation Administration (FAA) is currently undertaking a broad program known as Next Generation Air Transportation System (NextGen) to develop, introduce, and certify new technologies into the National Airspace System. NextGen is a fundamentally transformative change that is being implemented incrementally over a period of many years. Currently, the FAA is putting into place the foundation that provides support for the future building blocks of a fully operational NextGen. NextGen is a challenging undertaking that includes ground systems, avionics installed in a wide range of aircraft, and procedures to take advantage of the new technology. Transformation in the Air assesses the FAA's plan for research on methods and procedures to improve both confidence in and the timeliness of certification of new technologies for their introduction into the National Airspace System. This report makes recommendations to include both ground and air elements and document the plan's relationship to the other activities and procedures required for certification and implementation into the National Airspace System.
The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
The National Aerospace Initiative (NAI) was conceived as a joint effort between the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA) to sustain the aerospace leadership of the United States through the acceleration of selected aerospace technologies: hypersonic flight, access to space, and space technologies. The Air Force became concerned about the NAI's possible consequences on Air Force programs and budget if NAI program decisions differed from Air Force priorities. To examine this issue, it asked the NRC for an independent review of the NAI. This report presents the results of that assessment. It focuses on three questions asked by the Air Force: is NAI technically feasible in the time frame laid out; is it financially feasible over that period; and is it operationally relevant.
The Next Generation Air Transportation System's (NextGen) goal is the transformation of the U.S. national airspace system through programs and initiatives that could make it possible to shorten routes, navigate better around weather, save time and fuel, reduce delays, and improve capabilities for monitoring and managing of aircraft. A Review of the Next Generation Air Transportation provides an overview of NextGen and examines the technical activities, including human-system design and testing, organizational design, and other safety and human factor aspects of the system, that will be necessary to successfully transition current and planned modernization programs to the future system. This report assesses technical, cost, and schedule risk for the software development that will be necessary to achieve the expected benefits from a highly automated air traffic management system and the implications for ongoing modernization projects. The recommendations of this report will help the Federal Aviation Administration anticipate and respond to the challenges of implementing NextGen.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.