The U.S. Global Change Research Program (USGCRP) is an interagency program, established by the Global Change Research Act (GCRA) of 1990, mandated by Congress to "assist the Nation and the world to understand, assess, predict, and respond to human-induced and natural processes of global change". Since the USGCRP began, scientific understanding of global change has increased and the information needs of the nation have changed dramatically. A better understanding of what is changing and why can help decision makers in the public and private sectors cope with ongoing change. Accomplishments of the U.S. Global Change Research Program highlights the growth of global change science in the quarter century that the USGCRP has been in existence, and documents some of its contributions to that growth through its primary functions of interagency planning and coordination, and of synthesis of research and practice to inform decision making.
These documents summarize some of the recent studies of the relationships among climate, the aquatic environment, and the dynamics of fish populations. The studies are mostly from the North Pacific ocean, but there are reports of investigations from the North Atlatic Ocean and from fresh water. Various papers include numerous examples of the relationships between fish abundance trends and the environment.
Over the past 50 years, thousands of satellites have been sent into space on missions to collect data about the Earth. Today, the ability to forecast weather, climate, and natural hazards depends critically on these satellite-based observations. At the request of the National Aeronautics and Space Administration, the National Research Council convened a committee to examine the scientific accomplishments that have resulted from space-based observations. This book describes how the ability to view the entire globe at once, uniquely available from satellite observations, has revolutionized Earth studies and ushered in a new era of multidisciplinary Earth sciences. In particular, the ability to gather satellite images frequently enough to create "movies" of the changing planet is improving the understanding of Earth's dynamic processes and helping society to manage limited resources and environmental challenges. The book concludes that continued Earth observations from space will be required to address scientific and societal challenges of the future.
Each time we see grim pictures of aircraft wreckage on a rain-drenched crash site, or scenes of tired holiday travelers stranded in snow-covered airports, we are reminded of the harsh impact that weather can have on the flying public. This book examines issues that affect the provision of national aviation weather services and related research and technology development efforts. It also discusses fragmentation of responsibilities and resources, which leads to a less-than-optimal use of available weather information and examines alternatives for responding to this situation. In particular, it develops an approach whereby the federal government could provide stronger leadership to improve cooperation and coordination among aviation weather providers and users.
The Manual provides comprehensive information on a large number of U.S. government agencies. Along with entries on the agencies of the executive, judicial, & legislative branches of the government, users will also find information on quasi-official agencies, international organizations in which the U.S. participates, & other boards, commissions & committees. The Declaration of Independence & the Constitution of the United States are also included. This laminated edition features a sturdy cover, extra strong bindings, & heavy, acid-free paper. Recommended in: ALA's Guide to Reference Books, Walford's Guide to Reference Material.
Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.
Review of the National Science Foundation's Division on Atmospheric and Geospace Sciences Draft Goals and Objectives Documents is a letter report by an ad hoc committee reviewing the AGS draft goals and objectives. It addresses the following questions: Are the goals and objectives clear and appropriate? Are there any content areas missing from the draft that should be present if AGS is to achieve its overall vision and mission? Are there adequate mechanisms for coordinating and integrating issues that involve multiple disciplines and multiple divisions within NSF and other agencies within the atmospheric and geospace sciences enterprise?
In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.