Graduate Education in the Chemical Sciences is a summary of the December 1999 workshop, "Graduate Education in the Chemical Sciences: Issues for the 21st Century." This workshop discussed the various features of graduate education in chemical science and technology. Using case histories and their individual experiences, speakers examined the current status of graduate education in the chemical sciences, identified problems and opportunities, and discussed possible strategies for improving the system. The discussion was oriented toward the goal of generating graduates who are well prepared to advance the chemical sciences in academia, government, and industry in the next 5 to 10 years.
Major benefits to system architecture would result if cooling systems for components could be eliminated without compromising performance. This book surveys the state-of-the-art for the three major wide bandgap materials (silicon carbide, nitrides, and diamond), assesses the national and international efforts to develop these materials, identifies the technical barriers to their development and manufacture, determines the criteria for successfully packaging and integrating these devices into existing systems, and recommends future research priorities.
As environmental problems move upward on the public agenda, our knowledge of the earth's systems and how to sustain the habitability of our world becomes more critical. This volume reports on the state of earth science and outlines a research agenda, with priorities keyed to the real-world challenges facing human society. The product of four years of development with input from more than 200 earth-science specialists, the volume offers a wealth of historical background and current information on: Plate tectonics, volcanism, and other heat-generated earth processes. Evolution of our global environment and of life itself, as revealed in the fossil record. Human exploitation of water, fossil fuels, and minerals. Interaction between human populations and the earth's surface, discussing the role we play in earth's systems and the dangers we face from natural hazards such as earthquakes and landslides. This volume offers a comprehensive look at how earth science is currently practiced and what should be done to train professionals and adequately equip them to find the answers necessary to manage more effectively the earth's systems. This well-organized and practical book will be of immediate interest to solid-earth scientists, researchers, and college and high school faculty, as well as policymakers in the environmental arena.
The Department of the Navy maintains a vigorous science and technology (S&T) research program in those areas that are critically important to ensuring U.S. naval superiority in the maritime environment. A number of these areas depend largely on sustained Navy Department investments for their health, strength, and growth. One such area is naval hydromechanics, that is, the study of the hydrodynamic and hydroacoustic performance of Navy ships, submarines, underwater vehicles, and weapons. A fundamental understanding of naval hydromechanics provides direct benefits to naval warfighting capabilities through improvements in the speed, maneuverability, and stealth of naval platforms and weapons. An Assessment of Naval Hydromechanics Science and Technology is an assessment of S&T research in the area of naval hydromechanics. This report assesses the Navy's research effort in the area of hydromechanics, identifies non-Navy-sponsored research and development efforts that might facilitate progress in the area, and provides recommendations on how the scope of the Navy's research program should be focused to meet future objectives.
Research Needs in Subsurface Science provides an overview of the subsurface contamination problems across the DOE complex and shows by examples from the six largest DOE sites (Hanford Site, Idaho Engineering and Environmental Laboratory, Nevada Test Site, Oak Ridge Reservation, Rocky Flats Environmental Technology Site, and Savannah River Site) how advances in scientific and engineering knowledge can improve the effectiveness of the cleanup effort. This report analyzes the current Environmental Management (EM) Science Program portfolio of subsurface research projects to assess the extent to which the program is focused on DOE's contamination problems. This analysis employs an organizing scheme that provides a direct linkage between basic research in the EM Science Program and applied technology development in DOE's Subsurface Contaminants Focus Area. Research Needs in Subsurface Science also reviews related research programs in other DOE offices and other federal agencies (see Chapter 4) to determine the extent to which they are focused on DOE's subsurface contamination problems. On the basis of these analyses, this report singles out the highly significant subsurface contamination knowledge gaps and research needs that the EM Science Program must address if the DOE cleanup program is to succeed.
During recent years, large-scale investigations into global climate change and other highly visible issues have taken the lion's share of declining research funds. At the same time, funding for basic research in such core disciplines as physical oceanography, biological oceanography, chemical oceanography, and marine geology has dwindled. Global Ocean Science examines how the largest U.S. ocean research programs, such as the Ocean Drilling Program (ODP) and the Joint Global Ocean Flux Study (JGOFS), have significantly contributed to our understanding of the oceans. The book examines the impact of these programs on research, education, and collegiality within this diverse scientific community and offers recommendations to help ensure a vital future for ocean science, including: Specific results of the programs such as data collected, conceptual breakthroughs, information published, demonstrable use of program products, incorporation of new knowledge into education, and contribution to policymaking and decisionmaking by federal agencies. Mechanisms for efficiently identifying knowledge gaps and research questions, strategic planning of research programs, managing competitive proposals, securing needed resources, and more. This practical book will be welcomed by ocean investigators, users of oceanographic research findings, policymakers, administrators, educators, and students.
The high latitudes of the Arctic and Antarctic, together with some mountainous areas with glaciers and long-lasting snow, are sometimes called the cryosphere-defined as that portion of the planet where water is perennially or seasonally frozen as sea ice, snow cover, permafrost, ice sheets, and glaciers. Variations in the extent and characteristics of surface ice and snow in the high latitudes are of fundamental importance to global climate because of the amount of the sun's radiation that is reflected from these often white surfaces. Thus, the cryosphere is an important frontier for scientists seeking to understand past climate events, current weather, and climate variability. Obtaining the data necessary for such research requires the capability to observe and measure a variety of characteristics and processes exhibited by major ice sheets and large-scale patterns of snow and sea ice extent, and much of these data are gathered using satellites. As part of its efforts to better support the researchers studying the cryosphere and climate, the National Aeronautics and Space Administration (NASA)-using sophisticated satellite technology-measures a range of variables from atmospheric temperature, cloud properties, and aerosol concentration to ice sheet elevation, snow cover on land, and ocean salinity. These raw data are compiled and processed into products, or data sets, useful to scientists. These so-called "polar geophysical data sets" can then be studied and interpreted to answer questions related to atmosphere and climate, ice sheets, terrestrial systems, sea ice, ocean processes, and many other phenomena in the cryosphere. The goal of this report is to provide a brief review of the strategy, scope, and quality of existing polar geophysical data sets and help NASA find ways to make these products and future polar data sets more useful to researchers, especially those working on the global change questions that lie at the heart of NASA's Earth Science Enterprise.
Basic Research Opportunities in Earth Science identifies areas of high-priority research within the purview of the Earth Science Division of the National Science Foundation, assesses cross-disciplinary connections, and discusses the linkages between basic research and societal needs. Opportunities in Earth science have been opened up by major improvements in techniques for reading the geological record of terrestrial change, capabilities for observing active processes in the present-day Earth, and computational technologies for realistic simulations of dynamic geosystems. This book examines six specific areas in which the opportunities for basic research are especially compelling, including integrative studies of the near-surface environment (the "Critical Zone"); geobiology; Earth and planetary materials; investigations of the continents; studies of Earth's deep interior; and planetary science. It concludes with a discussion of mechanisms for exploiting these research opportunities, including EarthScope, natural laboratories, and partnerships.
This book brings to light trends in the support of life scientists beginning their professional careers. In 1985, 3,040 scientists under the age of 36 applied for individual investigator (R01) grants from the National Institutes of Health, and 1,002 received awards, for a "success rate" of 33%. In 1993, 1,389 scientists under the age of 36 applied for R01 grants and 302 received awards, for a success rate of 21.7%. Even when R23/R29 grant awards (both intended for new investigators) are added to the R01 awards, the number of R01 plus R23 awards made in 1985 was 1,308, and in 1993, the number of R01 plus R29 was 527. These recent trends in the funding of young biomedical research scientists, and the fact that young nonbiomedical scientists historically have had a smaller base of support to draw upon when beginning their careers, raises serious questions about the future of life science research. It is the purpose of this volume to present data about the trends and examine their implications.
The Panel on Estimates of Poverty for Small Geographic Areas was established by the Committee on National Statistics at the National Research Council in response to the Improving America's Schools Act of 1994. That act charged the U.S. Census Bureau to produce updated estimates of poor school-age children every two years for the nation's more than 3,000 counties and 14,000 school districts. The act also charged the panel with determining the appropriateness and reliability of the Bureau's estimates for use in the allocation of more than $7 billion of Title I funds each year for educationally disadvantaged children. The panel's charge was both a major one and one with immovable deadlines. The panel had to evaluate the Census Bureau's work on a very tight schedule in order to meet legal requirements for allocation of Title I funds. As it turned out, the panel produced three interim reports: the first one evaluated county-level estimates of poor school-age children in 1993, the second one assessed a revised set of 1993 county estimates; and the third one covered both county- and school district-level estimates of poor school-age children in 1995. This volume combines and updates these three reports into a single reference volume.
The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.
This book assesses the Department of Energy's Environmental Management Science Programâ€"a new program that funds basic research related to environmental cleanup of the department's weapons complex. The authoring committee was established to advise the department on the structure and management of the program. The book provides recommendations on long-term challenges and opportunities for the program.
In the three decades since the U.S. Environmental Protection Agency (EPA) was created, the agency's scientific and technical practices and credibility have been independently assessed many times in reports from the National Research Council (NRC), EPA Science Advisory Board, General Accounting Office, and many other organizations; in congressional oversight and judicial proceedings; and in countless criticisms and lawsuits from stakeholders with interests in particular EPA regulatory decisions. As a previous independent panel put it in the 1992 report Safeguarding the Future: Credible Science, Credible Decisions, EPA's policy and regulatory work receives a great deal of public attention, but the agency's scientific performance typically receives a similar degree of attention only when the scientific basis for a decision is questioned. Thus, strong scientific performance is important not only to enable EPA to make informed and effective decisions, but also to gain credibility and public support for the environmental protection efforts of EPA and the nation. This report is the fourth and final one in a series prepared by two independent expert committees convened by the NRC in response to a request from Congress and to subsequent, related requests from EPA. The Committee on Research Opportunities and Priorities for EPA-the companion committee in this study-was charged to provide an overview of significant emerging environmental issues, identify and prioritize research themes most relevant to understanding and resolving those issues, and consider the role of EPA's research program in the context of research being conducted or supported by other organizations. That committee published an interim report in 1996 and a final report, Building a Foundation for Sound Environmental Decisions, in 1997. The Committee on Research and Peer Review in EPA was charged to evaluate research management and scientific peer-review practices in the agency. The committee published an interim report in 1995 and this final report.
Over three hundred years ago, Galileo is reported to have said, "The laws of nature are written in the language of mathematics." Often mathematics and science go hand in hand, with one helping develop and improve the other. Discoveries in science, for example, open up new advances in statistics, computer science, operations research, and pure and applied mathematics which in turn enabled new practical technologies and advanced entirely new frontiers of science. Despite the interdependency that exists between these two disciplines, cooperation and collaboration between mathematical scientists and scientists have only occurred by chance. To encourage new collaboration between the mathematical sciences and other fields and to sustain present collaboration, the National Research Council (NRC) formed a committee representing a broad cross-section of scientists from academia, federal government laboratories, and industry. The goal of the committee was to examine the mechanisms for strengthening interdisciplinary research between mathematical sciences and the sciences, with a strong focus on suggesting the most effective mechanisms of collaboration. Strengthening the Linkages Between the Sciences and the Mathematical Sciences provides the findings and recommendations of the committee as well as case studies of cross-discipline collaboration, the workshop agenda, and federal agencies that provide funding for such collaboration.
The Endangered Species Act (ESA) is a far-reaching law that has sparked intense controversies over the use of public lands, the rights of property owners, and economic versus environmental benefits. In this volume a distinguished committee focuses on the science underlying the ESA and offers recommendations for making the act more effective. The committee provides an overview of what scientists know about extinctionâ€"and what this understanding means to implementation of the ESA. Habitatâ€"its destruction, conservation, and fundamental importance to the ESAâ€"is explored in detail. The book analyzes: Concepts of speciesâ€"how the term "species" arose and how it has been interpreted for purposes of the ESA. Conflicts between species when individual species are identified for protection, including several case studies. Assessment of extinction risk and decisions under the ESAâ€"how these decisions can be made more effectively. The book concludes with a look beyond the Endangered Species Act and suggests additional means of biological conservation and ways to reduce conflicts. It will be useful to policymakers, regulators, scientists, natural-resource managers, industry and environmental organizations, and those interested in biological conservation.
The science of animal nutrition has made significant advances in the past century. In looking back at the discoveries of the 20th century, we can appreciate the tremendous impact that animal nutrition has had on our lives. From the discovery of vitamins and the sweeping shift in the use of oilseeds to replace animal products as dietary protein sources for animals during the war times of the 1900s-to our integral understanding of nutrients as regulators of gene expression today-animal nutrition has been the cornerstone for scientific advances in many areas. At the milestone of their 70th year of service to the nation, the National Research Council's (NRC) Committee on Animal Nutrition (CAN) sought to gain a better understanding of the magnitude of recent discoveries and directions in animal nutrition for the new century we are embarking upon. With financial support from the NRC, the committee was able to organize and host a symposium that featured scientists from many backgrounds who were asked to share their ideas about the potential of animal nutrition to address current problems and future challenges.
What can social science, and demography in particular, reasonably expect to learn from biological information? There is increasing pressure for multipurpose household surveys to collect biological data along with the more familiar interviewer-respondent information. Given that recent technical developments have made it more feasible to collect biological information in non-clinical settings, those who fund, design, and analyze survey data need to think through the rationale and potential consequences. This is a concern that transcends national boundaries. Cells and Surveys addresses issues such as which biologic/genetic data should be collected in order to be most useful to a range of social scientists and whether amassing biological data has unintended side effects. The book also takes a look at the various ethical and legal concerns that such data collection entails.
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.
Each new headline about American students' poor performance in math and science leads to new calls for reform in teaching. Education Teachers of Science, Mathematics, and Technology puts the whole picture together by synthesizing what we know about the quality of math and science teaching, drawing conclusions about why teacher preparation needs reform, and then outlining recommendations for accomplishing the most important goals before us. As a framework for addressing the task, the book advocates partnerships among school districts, colleges, and universities, with contributions from scientists, mathematicians, teacher educators, and teachers. It then looks carefully at the status of the education reform movement and explores the motives for raising the bar for how well teachers teach and how well students learn. Also examined are important issues in teacher professionalism: what teachers should be taught about their subjects, the utility of in-service education, the challenge of program funding, and the merits of credentialing. Professional Development Schools are reviewed and vignettes presented that describe exemplary teacher development practices.
The Hanford Site was established by the federal government in 1943 as part of the secret wartime effort to produce plutonium for nuclear weapons. The site operated for about four decades and produced roughly two thirds of the 100 metric tons of plutonium in the U.S. inventory. Millions of cubic meters of radioactive and chemically hazardous wastes, the by-product of plutonium production, were stored in tanks and ancillary facilities at the site or disposed or discharged to the subsurface, the atmosphere, or the Columbia River. In the late 1980s, the primary mission of the Hanford Site changed from plutonium production to environmental restoration. The federal government, through the U.S. Department of Energy (DOE), began to invest human and financial resources to stabilize and, where possible, remediate the legacy of environmental contamination created by the defense mission. During the past few years, this financial investment has exceeded $1 billion annually. DOE, which is responsible for cleanup of the entire weapons complex, estimates that the cleanup program at Hanford will last until at least 2046 and will cost U.S. taxpayers on the order of $85 billion. Science and Technology for Environmental Cleanup at Hanford provides background information on the Hanford Site and its Integration Project,discusses the System Assessment Capability, an Integration Project-developed risk assessment tool to estimate quantitative effects of contaminant releases, and reviews the technical elements of the scierovides programmatic-level recommendations.
Research on education has come into the political spotlight as the demand grows for reliable and credible information for the guidance of policy and practice in the education reform environment. Many debates among the education research community feature questions concerning the nature of evidence and these questions have also appeared in broader policy and practice arenas. Inquiry has generally, over the past years, created bodies of scientific knowledge that have profound implications for education. Dramatic advances in understanding how people learn, how young children acquire early reading skills, and how to design and evaluate educational and psychological measurements is a good example of this. However, the highly contextualized nature of education and the wide range of disciplinary perspectives that rely on it have made the identification of reducible, generalizable principles difficult and slow to achieve. Due to this, the U.S. Department of Education's National Educational Research Policy and Priorities Board (NERPPB) has asked the NRC to establish a study committee to consider the scientific underpinnings of research in education. The committee consists of members with expertise in statistics, psychology, sociology, anthropology, philosophy of science, history of education, economics, chemistry, biology, and education practice. The committee worked with the three questions in mind: What are the principles of scientific quality in education research?, How can research-based knowledge in education cumulate?, and How can a federal research agency promote and protect scientific quality in the education research it supports?. A workshop was held on March 7-8, 2001 that was organized into three main sessions: Supporting Scientific Quality at the Federal level, The Interface of Research and Practice in Education, and Evidence and Inference. Science, Evidence, and Inference in Education: Report of a Workshop summarizes this workshop through these three ideas. The report also includes what the committee plans to do next, the workshop agenda, and information on the workshop's participants and speakers.
This review of the Science and Technology (S&T) program of the Office of Naval Research's (ONR's) Expeditionary Warfare Operations Technology Division, Code 353, comes at a time of considerable change in the Marine Corps and in ONR, which are currently in the midst of significant transitions. The Marine Corps is making plans to equip and train for engaging in a new style of warfare known as Operational Maneuver From the Sea (OMFTS) and for performing a wide variety of missions in urban settings, ranging from humanitarian assistance to combat and mixes of these suggested by the term three-block war. During 1999, ONR assumed management of that portion of the Marine Corps S&T program that had not been assigned several years earlier to the Marine Corps Warfighting Laboratory (MCWL). In 2002, control of most of ONR's advanced development funding (6.3), and of much of its exploratory development funding (6.2), will move from ONR's line divisions, of which Code 353 is one of many, to 12 new program offices, each dedicated to demonstrating technologies for future naval capabilities (FNCs). Given these changes, it is not surprising that some of the projects inherited recently by ONR, and assessed by the Committee for the Review of ONR's Marine Corps Science and Technology Program under the auspices of the Naval Studies Board of the National Research Council, differed from the customary ONR project and were more akin to preacquisition or acquisition support than to S&T. It is also not surprising that Code 353 could not articulate its plans for future investments clearly and concisely, given the current uncertainty about the content of and funding level for FNCs. The Marine Corps S&T program supports the five imperatives for technology advancement that the Marine Corps Combat Development Command (MCCDC) has identified as prerequisites for the transition to OMFTS: maneuver, firepower, logistics, training and education, and command and control. The committee supports investment in these areas and, in the report's discussions and recommendations, follows the five imperatives.
The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.
Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions addresses fundamental issues of mission architecture in the nation's scientific space program and responds to the FY99 Senate conference report, which requested that NASA commission a study to assess the strengths and weaknesses of small, medium, and large missions. This report evaluates the general strengths and weaknesses of small, medium, and large missions in terms of their potential scientific productivity, responsiveness to evolving opportunities, ability to take advantage of technological progress, and other factors that may be identified during the study; identifies which elements of the SSB and NASA science strategies will require medium or large missions to accomplish high-priority science objectives; and recommends general principles or criteria for evaluating the mix of mission sizes in Earth and space science programs. Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions considers not only scientific, technological, and cost trade-offs, but also institutional and structural issues pertaining to the vigor of the research community, government-industry university partnerships, graduate student training, and the like.
The Hawaiian Crow, or 'Alala, once an inhabitant of large forested areas of Hawaii, is now found only in the wild in a relatively small area of the central Kona coast. The decline of the 'Alala is part of a larger phenomenon of reduction and extinction of forest birds throughout Polynesia that has been associated with human colonization. It is a symptom of underlying ecological problems. In this book, a committee of experts in ornithology, captive propagation, conservation biology, population genetics, and ecology analyzes existing data about the 'Alala and details its findings, conclusions, and recommendations concerning recovery efforts for this endangered bird.
The International Space Station (ISS) is truly an international undertaking. The project is being led by the United States, with the participation of Japan, the European Space Agency, Canada, Italy, Russia, and Brazil. Russia is participating in full partnership with the United States in the fabrication of ISS modules, the assembly of ISS elements on orbit, and, after assembly has been completed, the day-to-day operation of the station. Construction of the ISS began with the launch of the Russian Zarya module in November 1998 followed by the launch of the U.S. Unity module in December 1998. The two modules were mated and interconnected by the crew of the Space Shuttle during the December flight, and the first assembled element of the ISS was in place. Construction will continue with the delivery of components and assembly on orbit through a series of 46 planned flights. During the study period, the Assembly Complete milestone was scheduled for November 2004 with the final ISS construction flight delivering the U.S. Habitation Module. Engineering Challenges to the Long-Term Operation of the International Space Station is a study of the engineering challenges posed by longterm operation of the ISS. This report states that the National Aeronautics and Space Administration (NASA) and the ISS developers have focused almost totally on completing the design and development of the station and completing its assembly in orbit. This report addresses the issues and opportunities related to long-term operations.
Despite our reliance on the ocean and its resources, it remains a frontier for scientific exploration and discovery. Seafloor observatoriesâ€"unmanned systems of instruments, sensors, and command modulesâ€"will have power and communication capabilities to provide support for spatially distributed sensing systems and mobile platforms. Illuminating the Hidden Planet is a voyage to the bottom of the sea, advancing oceanographic science further through long time-series measurements, to discover the mysteries of the deep that have, until now, avoided scientific opportunity.
The U.S. Army Corps of Engineers has long been one of the federal government's key agencies in planning the uses of the nation's waterways and water resources. Though responsible for a range of water-related programs, the Corps's two traditional programs have been flood damage reduction and navigation enhancement. The water resource needs of the nation, however, have for decades been shifting away from engineered control of watersheds toward restoration of ecosystem services and natural hydrologic variability. In response to these shifting needs, legislation was enacted in 1990 which initiated the Corps's involvement in ecological restoration, which is now on par with the Corps's traditional flood damage reduction and navigation roles. This book provides an analysis of the Corps's efforts in ecological restoration, and provides broader recommendations on how the corps might streamline their planning process. It also assesses the impacts of federal legislation on the Corps planning and projects, and provides recommendations on how relevant federal policies might be altered in order to improve Corps planning. Another important shift affecting the Corps has been federal cost-sharing arrangements (enacted in 1986), mandating greater financial participation in Corps water projects by local co-sponsors. The book describes how this has affected the Corps-sponsor relationship, and comments upon how each group must adjust to new planning and political realities.
This is an interim report of the ad hoc Committee on Air Emissions from Animal Feeding Operations of the National Research Council's Committee on Animal Nutrition. A final report is expected to be issued by the end of 2002. The interim report is intended to provide the committee's findings to date on assessment of the scientific issues involved in estimating air emissions from individual animal feeding operations (swine, beef, dairy, and poultry) as related to current animal production systems and practices in the United States. The committee's final report will include an additional assessment within eight broad categories: industry size and structure, emission measurement methodology, mitigation technology and best management plans, short- and long-term research priorities, alternative approaches for estimating emissions, human health and environmental impacts, economic analyses, and other potential air emissions of concern. This interim report focuses on identifying the scientific criteria needed to ensure that estimates of air emission rates are accurate, the basis for these criteria in the scientific literature, and uncertainties associated with them. It also includes an assessment of the emission-estimating approaches in a recent U.S. Environmental Protection Agency (EPA) report Air Emissions from Animal Feeding Operations. Finally, it identifies economic criteria needed to assess emission mitigation techniques and best management practices.
The science and engineering enterprise has continued to evolve, responding over the last decade to increased economic globalization, a post-cold war military, federal budget fluctuations, and structural changes in the way science and engineering are conducted and innovations are adopted. This report suggests ways to revise the data collection activities of the Science Resources Studies Division (SRS) of the National Science Foundation to better capture the current realities of R&D funding and S&E human resources. The report's recommendations would improve the relevance of the data on graduate education, the labor market for scientists and engineers, and the funding and conduct of research and development, and thus better meet the data needs of policymakers, managers, and researchers.
During 2001, a severe drought occurred in the Klamath River Basin. The U.S. Department of the Interior (DOI) determined that the newly issued biological opinions and their RPAs must prevail; thus, water that would have gone to irrigators was directed almost entirely to attempts to maintain minimum lake levels and minimum flows as prescribed in the two RPAs. The severe economic consequences of this change in water management led DOI to request that the National Research Council (NRC) independently review the scientific and technical validity of the government's biological opinions and their RPAs. The NRC Committee on Endangered and Threatened Fishes in the Klamath River Basin was formed in response to this request. The committee was charged with filing an interim report after approximately less than 3 months of study and a final report after about 18 months of study. The interim report, which is summarized here, focuses on the biological assessments of the USBR (2001) and the USFWS and NMFS biological opinions of 2001 regarding the effects of Klamath Project operations on the three listed fish species.
In the years since the Shelby Amendment, scientists, industry, and policy makers have struggled over how the public's new right of access should be applied to scientific data. There is loose agreement that research data should be accessible, but wide disagreement over the "depth" to which the public has such a right. The National Academies' Science, Technology, and Law Program held a workshop to explore the mounting tensions in the federal regulatory process between the need to provide access to research data and the need to protect the integrity of the research process. The workshop provided a picture of the debate arising from passage of the Shelby Amendment and the resulting OMB revisions of Circular A-110. This report is a summary of the workshop.
The Congestion Mitigation and Air Quality Improvement (CMAQ) program was enacted as part of the surface transportation legislation. This work recommends that Congress retain the sole federal surface transportation program that funds projects to reduce pollution and traffic congestion in areas that must comply with national air quality standards.
The federal courts are seeking ways to increase the ability of judges to deal with difficult issues of scientific expert testimony. The workshop explored the new environment judges, plaintiffs, defendants, and experts face in light of "Daubert" and "Kumho," when presenting and evaluating scientific, engineering, and medical evidence.
In 1997, New York City adopted a mammoth watershed agreement to protect its drinking water and avoid filtration of its large upstate surface water supply. Shortly thereafter, the NRC began an analysis of the agreement's scientific validity. The resulting book finds New York City's watershed agreement to be a good template for proactive watershed management that, if properly implemented, will maintain high water quality. However, it cautions that the agreement is not a guarantee of permanent filtration avoidance because of changing regulations, uncertainties regarding pollution sources, advances in treatment technologies, and natural variations in watershed conditions. The book recommends that New York City place its highest priority on pathogenic microorganisms in the watershed and direct its resources toward improving methods for detecting pathogens, understanding pathogen transport and fate, and demonstrating that best management practices will remove pathogens. Other recommendations, which are broadly applicable to surface water supplies across the country, target buffer zones, stormwater management, water quality monitoring, and effluent trading.
The Clean Water Act (CWA) requires that wetlands be protected from degradation because of their important ecological functions including maintenance of high water quality and provision of fish and wildlife habitat. However, this protection generally does not encompass riparian areasâ€"the lands bordering rivers and lakesâ€"even though they often provide the same functions as wetlands. Growing recognition of the similarities in wetland and riparian area functioning and the differences in their legal protection led the NRC in 1999 to undertake a study of riparian areas, which has culminated in Riparian Areas: Functioning and Strategies for Management. The report is intended to heighten awareness of riparian areas commensurate with their ecological and societal values. The primary conclusion is that, because riparian areas perform a disproportionate number of biological and physical functions on a unit area basis, restoration of riparian functions along America's waterbodies should be a national goal.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.