What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Federal agencies have taken steps to include the public in a wide range of environmental decisions. Although some form of public participation is often required by law, agencies usually have broad discretion about the extent of that involvement. Approaches vary widely, from holding public information-gathering meetings to forming advisory groups to actively including citizens in making and implementing decisions. Proponents of public participation argue that those who must live with the outcome of an environmental decision should have some influence on it. Critics maintain that public participation slows decision making and can lower its quality by including people unfamiliar with the science involved. This book concludes that, when done correctly, public participation improves the quality of federal agencies' decisions about the environment. Well-managed public involvement also increases the legitimacy of decisions in the eyes of those affected by them, which makes it more likely that the decisions will be implemented effectively. This book recommends that agencies recognize public participation as valuable to their objectives, not just as a formality required by the law. It details principles and approaches agencies can use to successfully involve the public.
Facilitating Interdisciplinary Research examines current interdisciplinary research efforts and recommends ways to stimulate and support such research. Advances in science and engineering increasingly require the collaboration of scholars from various fields. This shift is driven by the need to address complex problems that cut across traditional disciplines, and the capacity of new technologies to both transform existing disciplines and generate new ones. At the same time, however, interdisciplinary research can be impeded by policies on hiring, promotion, tenure, proposal review, and resource allocation that favor traditional disciplines. This report identifies steps that researchers, teachers, students, institutions, funding organizations, and disciplinary societies can take to more effectively conduct, facilitate, and evaluate interdisciplinary research programs and projects. Throughout the report key concepts are illustrated with case studies and results of the committee's surveys of individual researchers and university provosts.
The Mobile Source Emissions Factor (MOBILE) model is a computer model developed by the U.S. Environmental Protection Agency (EPA) for estimating emissions from on-road motor vehicles. MOBILE is used in air-quality planning and regulation for estimating emissions of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides (NOx) and for predicting the effects of emissions-reduction programs. Because of its important role in air-quality management, the accuracy of MOBILE is critical. Possible consequences of inaccurately characterizing motor-vehicle emissions include the implementation of insufficient controls that endanger the environment and public health or the implementation of ineffective policies that impose excessive control costs. Billions of dollars per year in transportation funding are linked to air-quality attainment plans, which rely on estimates of mobile-source emissions. Transportation infrastructure decisions are also affected by emissions estimates from MOBILE. In response to a request from Congress, the National Research Council established the Committee to Review EPA's Mobile Source Emissions Factor (MOBILE) Model in October 1998. The committee was charged to evaluate MOBILE and to develop recommendations for improving the model.
One of the biggest threats today is the uncertainty surrounding the emergence of a novel pathogen or the re-emergence of a known infectious disease that might result in disease outbreaks with great losses of human life and immense global economic consequences. Over the past six decades, most of the emerging infectious disease events in humans have been caused by zoonotic pathogens-those infectious agents that are transmitted from animals to humans. In June 2008, the Institute of Medicine's and National Research Council's Committee on Achieving Sustainable Global Capacity for Surveillance and Response to Emerging Diseases of Zoonotic Origin convened a workshop. This workshop addressed the reasons for the transmission of zoonotic disease and explored the current global capacity for zoonotic disease surveillance.
The United States currently has no place to dispose of the high-level radioactive waste resulting from the production of the nuclear weapons and the operation of nuclear electronic power plants. The only option under formal consideration at this time is to place the waste in an underground geologic repository at Yucca Mountain in Nevada. However, there is strong public debate about whether such a repository could protect humans from the radioactive waste that will be dangerous for many thousands of years. This book shows the extent to which our scientific knowledge can guide the federal government in developing a standard to protect the health of the public from wastes in such a repository at Yucca Mountain. The U.S. Environmental Protection Agency is required to use the recommendations presented in this book as it develops its standard.
How did life evolve on Earth? The answer to this question can help us understand our past and prepare for our future. Although evolution provides credible and reliable answers, polls show that many people turn away from science, seeking other explanations with which they are more comfortable. In the book Science, Evolution, and Creationism, a group of experts assembled by the National Academy of Sciences and the Institute of Medicine explain the fundamental methods of science, document the overwhelming evidence in support of biological evolution, and evaluate the alternative perspectives offered by advocates of various kinds of creationism, including "intelligent design." The book explores the many fascinating inquiries being pursued that put the science of evolution to work in preventing and treating human disease, developing new agricultural products, and fostering industrial innovations. The book also presents the scientific and legal reasons for not teaching creationist ideas in public school science classes. Mindful of school board battles and recent court decisions, Science, Evolution, and Creationism shows that science and religion should be viewed as different ways of understanding the world rather than as frameworks that are in conflict with each other and that the evidence for evolution can be fully compatible with religious faith. For educators, students, teachers, community leaders, legislators, policy makers, and parents who seek to understand the basis of evolutionary science, this publication will be an essential resource.
Are environmental pollutants threatening the human immune system? Researchers are rapidly approaching definitive answers to this question, with the aid of biologic markersâ€"sophisticated assessment tools that could revolutionize detection and prevention of certain diseases. This volume, third in a series on biologic markers, focuses on the human immune system and its response to environmental toxicants. The authoring committee provides direction for continuing development of biologic markers, with strategies for applying markers to immunotoxicology in humans and recommended outlines for clinical and field studies. This comprehensive, up-to-date volume will be invaluable to specialists in toxicology and immunology and to biologists and investigators involved in the development of biologic markers.
Continuing advances in science and technology offer the promise of providing tools to meet global challenges in health, agriculture, the environment, and economic development; some of the benefits are already being realized. However, such advances have the potential to challenge the oversight systems for responsible conduct of life sciences research with dual use potential â€" research that may have beneficial applications but that also could be misused to cause harm. Between June 10 and 13, 2018, more than 70 participants from 30 different countries and 5 international organizations took part in an international workshop, The Governance of Dual Use Research in the Life Sciences: Advancing Global Consensus on Research Oversight, to promote global dialogue and increased common understandings of the essential elements of governance for such research. Hosted by the Croatian Academy of Sciences and Arts in Zagreb, Croatia, the workshop was a collaboration among the InterAcademy Partnership, the Croatian Academy, the Croatian Society for Biosafety and Biosecurity, and the U.S. National Academies of Sciences, Engineering, and Medicine. This publication summarizes the presentations and discussions from the workshop.
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.