How can the federal government gauge the overall health of scientific researchâ€"as a whole and in its partsâ€"and determine whether national funding adequately supports national research objectives? It is feasible to monitor US performance with field-by-field peer assessments. This might be done through the establishment of independent panels consisting of researchers who work in a field, individuals who work in closely related fields, and research "users" who follow the field closely. Some of these individuals should be outstanding foreign scientists in the field being examined. This technique of comparative international assessments is also known as international benchmarking. Experiments in International Benchmarking of U.S. Research Fields evaluates the feasibility and utility of the benchmarking technique. In order to do this, the report internationally benchmarks three fields: mathematics, immunology, and materials science and engineering, then summarizes the results of these experiments.
The U.S. academic research enterprise is entering a new era characterized by remarkable opportunities and increased strain. This two-part volume integrates the experiential knowledge of group members with quantitative data analyses in order to examine the status of scientific and technological research in academic settings. Part One reviews the status of the current research enterprise, emerging trends affecting it, and issues central to its future. Part Two is an overview of the enterprise and describes long-term trends in financial and human resources. This new book will be useful in stimulating policy discussionsâ€"especially among individuals and organizations that fund or perform academic research.
This report summarizes the 2019 findings of the Panel on Review of Extramural Basic Research at the Army Research Laboratory, which reviewed the programs at the Army Research Office's Physical Sciences Directorate.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959, annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering environments to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories' resources. Review of Three Divisions of the Information Technology Laboratory at the National Institute of Standards and Technology: Fiscal Year 2015 assesses the organization's technical programs, the portfolio of scientific expertise within the organization, the adequacy of the organization's facilities, equipment, and human resources, and the effectiveness by which the organization disseminates its program outputs.
An Assessment of Four Divisions of the Physical Measurement Laboratory at the National Institute of Standards and Technology: Fiscal Year 2018 assesses the scientific and technical work performed by four divisions of the National Institute of Standards and Technology (NIST) Physical Measurement Laboratory. This publication reviews technical reports and technical program descriptions prepared by NIST staff and summarizes the findings of the authoring panel.
The Physical Measurement Laboratory (PML) at the National Institute of Standards and Technology (NIST) is dedicated to three fundamental and complementary tasks: (1) increase the accuracy of our knowledge of the physical parameters that are the foundation of our technology-driven society; (2) disseminate technologies by which these physical parameters can be accessed in a standardized way by the stakeholders; and (3) conduct research at both fundamental and applied levels to provide knowledge that may eventually lead to advances in measurement approaches and standards. This report assesses the scientific and technical work performed by the PML and identifies salient examples of accomplishments, challenges, and opportunities for improvement for each of its nine divisions.
A Strategy for Assessing Science offers strategic advice on the perennial issue of assessing rates of progress in different scientific fields. It considers available knowledge about how science makes progress and examines a range of decision-making strategies for addressing key science policy concerns. These include avoiding undue conservatism that may arise from the influence of established disciplines; achieving rational, high-quality, accountable, and transparent decision processes; and establishing an appropriate balance of influence between scientific communities and agency science managers. A Strategy for Assessing Science identifies principles for setting priorities and specific recommendations for the context of behavioral and social research on aging.
This report summarizes the 2018 findings of the Panel on Review of Extramural Basic Research at the Army Research Laboratory, which reviewed the programs at the Army Research Office's Information Sciences Directorate.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.