Book's by National Academies of Sciences, Engineering, and Medicine (U.S.). Committee on Supplemental Treatment of Low-Activity Waste at the Hanford Nuclear Reservation
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste (LAW) at the Hanford Nuclear Reservation intended for supplemental treatment. The second of four, this report reviews the results of the assessments, including the formulation and presentation of conclusions and the characterization and treatment of uncertainties.
The U.S. Department of Energy's Office of Environmental Management is responsible for managing and cleaning up the waste and contamination at the Hanford Nuclear Reservation, the nation's biggest and most complex nuclear cleanup challenge. At the site, 177 underground tanks collectively contain about 211 million liters of waste that includes high-activity and low-activity materials. At the request of Congress, Final Review of the Study on Supplemental Treatment Approaches of Low-Activity Waste at the Hanford Nuclear Reservation: Review #4 focuses on approaches for treatment and disposal of the supplemental portion of the low-activity waste from the tanks. This review report discusses developments since the publication of Review #3 and provides a summary of public comments on the third committee review report. The authoring committee then shares their views on these comments and whether they change any of the findings or recommendations in the third review report.
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste at the Hanford Nuclear Reservation intended for supplemental treatment. The third of four, this report provides an overall assessment of the FFRDC team's final draft report, dated April 5, 2019.
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste (LAW) at the Hanford Nuclear Reservation intended for supplemental treatment. The first of four, this report reviews the analysis carried out by the FFRDC. It evaluates the technical quality and completeness of the methods used to conduct the risk, cost benefit, schedule, and regulatory compliance assessments and their implementations; waste conditioning and supplemental treatment approaches considered in the assessments; and other key information and data used in the assessments.
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste at the Hanford Nuclear Reservation intended for supplemental treatment. The third of four, this report provides an overall assessment of the FFRDC team's final draft report, dated April 5, 2019.
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste (LAW) at the Hanford Nuclear Reservation intended for supplemental treatment. The first of four, this report reviews the analysis carried out by the FFRDC. It evaluates the technical quality and completeness of the methods used to conduct the risk, cost benefit, schedule, and regulatory compliance assessments and their implementations; waste conditioning and supplemental treatment approaches considered in the assessments; and other key information and data used in the assessments.
The U.S. Department of Energy's Office of Environmental Management is responsible for managing and cleaning up the waste and contamination at the Hanford Nuclear Reservation, the nation's biggest and most complex nuclear cleanup challenge. At the site, 177 underground tanks collectively contain about 211 million liters of waste that includes high-activity and low-activity materials. At the request of Congress, Final Review of the Study on Supplemental Treatment Approaches of Low-Activity Waste at the Hanford Nuclear Reservation: Review #4 focuses on approaches for treatment and disposal of the supplemental portion of the low-activity waste from the tanks. This review report discusses developments since the publication of Review #3 and provides a summary of public comments on the third committee review report. The authoring committee then shares their views on these comments and whether they change any of the findings or recommendations in the third review report.
In 1943, as part of the Manhattan Project, the Hanford Nuclear Reservation was established with the mission to produce plutonium for nuclear weapons. During 45 years of operations, the Hanford Site produced about 67 metric tonnes of plutoniumâ€"approximately two-thirds of the nation's stockpile. Production processes generated radioactive and other hazardous wastes and resulted in airborne, surface, subsurface, and groundwater contamination. Presently, 177 underground tanks contain collectively about 210 million liters (about 56 million gallons) of waste. The chemically complex and diverse waste is difficult to manage and dispose of safely. Section 3134 of the National Defense Authorization Act for Fiscal Year 2017 calls for a Federally Funded Research and Development Center (FFRDC) to conduct an analysis of approaches for treating the portion of low-activity waste (LAW) at the Hanford Nuclear Reservation intended for supplemental treatment. The second of four, this report reviews the results of the assessments, including the formulation and presentation of conclusions and the characterization and treatment of uncertainties.
DOE's current plan for treating the nearly 56 million gallons of radioactive and heterogeneous waste in 177 large tanks is to separate it into two waste streams: a high-level waste (HLW) stream that will have less than 10 percent of the volume but more than 90 percent of the radioactivity and a low-activity waste (LAW) stream that will have more than 90 percent of the volume but less than 10 percent of the radioactivity. Once the under-construction Waste Treatment and Immobilization Plant (WTP) becomes operational, it will vitrify the HLW stream and at least one-third to perhaps one-half of the LAW stream. The excess LAW that still needs to be treated is called supplemental low-activity waste (SLAW). DOE, the Washington State Department of Ecology, and the Environmental Protection Agency--the three parties under the legally binding 1989 Tri-Party Agreement--have yet to agree on the SLAW treatment method.--Preface.
The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.
A major issue in the cleanup of this country's nuclear weapons complex is how to dispose of the radioactive waste resulting primarily from the chemical processing operations for the recovery of plutonium and other defense strategic nuclear materials. The wastes are stored in hundreds of large underground tanks at four U.S. Department of Energy (DOE) sites throughout the United States. The tanks contain hundreds of thousands of cubic meters of radioactive and hazardous waste. Most of it is high-level waste (HLW), some of it is transuranic (TRU) or low- level waste (LLW), and essentially all containing significant amounts of chemicals deemed hazardous. Of the 278 tanks involved, about 70 are known or assumed to have leaked some of their contents to the environment. The remediation of the tanks and their contents requires the development of new technologies to enable cleanup and minimize costs while meeting various health, safety, and environmental objectives. While DOE has a process based on stakeholder participation for screening and formulating technology needs, it lacks transparency (in terms of being apparent to all concerned decision makers and other interested parties) and a systematic basis (in terms of identifying end states for the contaminants and developing pathways to these states from the present conditions). An End State Methodology for Identifying Technology Needs for Environmental Management, with an Example from the Hanford Site Tanks describes an approach for identifying technology development needs that is both systematic and transparent to enhance the cleanup and remediation of the tank contents and their sites. The authoring committee believes that the recommended end state based approach can be applied to DOE waste management in general, not just to waste in tanks. The approach is illustrated through an example based on the tanks at the DOE Hanford Site in southeastern Washington state, the location of some 60 percent by volume of the tank waste residues.
In response to a request from Congress, the U.S. Department of Energy (DOE) asked the National Academies to evaluate its plans for managing radioactive wastes from spent nuclear fuel at sites in Idaho, South Carolina, and Washington. This interim report evaluates storage facilities at the Savannah River Site in South Carolina, with a particular focus on plans to seal the tanks with grouting. The report finds that tanks at the site do not necessarily need to be sealed shut as soon as the bulk of the waste has been removed. Postponing permanent closure buys more time for the development and application of emerging technologies to remove and better immobilize residual waste, without increasing risks to the environment or delaying final closure of the "tank farms." The report also recommends alternatives to address the lack of tank space at the site, as well as the need for focused R&D activities to reduce the amount and improve the immobilization of residual waste in the tanks and to test some of the assumptions used in evaulating long-term risks at the site.
The United States Department of Energy (DOE) has approximately 400 million liters (100 million gallons) of liquid high-level waste (HLW) stored in underground tanks and approximately 4,000 cubic meters of solid HLW stored in bins. The current DOE estimate of the cost of converting these liquid and solid wastes into stable forms for shipment to a geological repository exceeds $50 billion to be spent over several decades (DOE, 2000). The Committee on Long-Term Research Needs for Radioactive High-Level Waste at Department of Energy Sites was appointed by the National Research Council (NRC) to advise the Environmental Management Science Program (EMSP) on a long-term research agenda addressing the above problems related to HLW stored in tanks and bins at DOE sites.
It is now becoming clear that relatively few U.S. Department of Energy (DOE) waste sites will be cleaned up to the point where they can be released for unrestricted use. "Long-term stewardship" (activities to protect human health and the environment from hazards that may remain at its sites after cessation of remediation) will be required for over 100 of the 144 waste sites under DOE control (U.S. Department of Energy, 1999). After stabilizing wastes that remain on site and containing them as well as is feasible, DOE intends to rely on stewardship for as long as hazards persistâ€"in many cases, indefinitely. Physical containment barriers, the management systems upon which their long-term reliability depends, and institutional controls intended to prevent exposure of people and the environment to the remaining site hazards, will have to be maintained at some DOE sites for an indefinite period of time. The Committee on Remediation of Buried and Tank Wastes finds that much regarding DOE's intended reliance on long-term stewardship is at this point problematic. The details of long-term stewardship planning are yet to be specified, the adequacy of funding is not assured, and there is no convincing evidence that institutional controls and other stewardship measures are reliable over the long term. Scientific understanding of the factors that govern the long-term behavior of residual contaminants in the environment is not adequate. Yet, the likelihood that institutional management measures will fail at some point is relatively high, underscoring the need to assure that decisions made in the near term are based on the best available science. Improving institutional capabilities can be expected to be every bit as difficult as improving scientific and technical ones, but without improved understanding of why and how institutions succeed and fail, the follow-through necessary to assure that long-term stewardship remains effective cannot reliably be counted on to occur. Long-Term Institutional Management of U.S. Department of Energy Legacy Waste Sites examines the capabilities and limitations of the scientific, technical, and human and institutional systems that compose the measures that DOE expects to put into place at potentially hazardous, residually contaminated sites.
The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.
As operational experience is gained in the disposal of transuranic waste from nuclear weapons facilities at the Waste Isolation Pilot Plant in New Mexico, the Department of Energy (DOE) has opportunities to change how it "characterizes" waste to confirm that it is appropriate for shipment to and disposal at the underground repository. The waste shipped to the facility includes gloves, rags, tools, and other debris or dried sludge that has been contaminated by radioactive elements, including plutonium, during production or cleanup activities in the DOE weapons complex. However, before the DOE seeks regulatory approval for changes to its characterization program, the agency should conduct and publish a systematic and quantitative assessment to show that the proposed changes would not affect the protection of workers, the public, or the environment, according to the committee. The assessment should take into account technical factors, societal and regulatory impacts, and the time and effort required to make the changes.
This volume discusses the readiness of the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) facility near Carlsbad, New Mexico, to serve as a geological repository for transuranic radioactive waste. WIPP is located in a Permian-age bedded salt deposit 658 meters below the surface. The committee has long reviewed DOE's readiness efforts, now aimed at demonstrating compliance with U.S. Environmental Protection Agency regulations. Site characterization studies and performance assessment modeling are among the topics considered in this volume.
The U.S. Department of Energy (DOE) is preparing an environmental impact statement (EIS) for management of aluminum spent fuel from foreign and domestic research reactors, much of which is highly enriched in uranium-235. This EIS will assess the need for additional treatment and storage facilities at the Savannah River Site to accommodate the receipt of this fuel, and it also will assess and select a treatment technology to prepare this fuel for interim storage and eventual shipment to a repository for disposal. This National Research Council book, which was prepared at the request of DOE's Savannah River Office, provides a technical assessment of the technologies, costs, and schedules developed by DOE for eight alternative treatment options and the baseline reprocessing option. It also provides comments on DOE's aluminum spent fuel disposal program, a program that is slated to last for about 40 years and cost in excess of $2 billion.
In May 2003, the Russian Academy of Sciences and the National Academies organized an international workshop in Moscow on the scientific issues relevant to the establishment and operation of an international spent nuclear fuel storage facility in Russia. Given the broad international interest in this topic, the academies organized a second international workshop on important issues that were not on the agenda or were not adequately discussed at the first workshop. These issues included international monitoring at the facility, transportation requirements, liability and insurance concerns, and status of Russian legislation and regulations that are important in locating and operating a facility. Relevant experience from Europe, the United States, and Asia was also considered in this 2005 workshop. This book contains the papers presented at the 2005 workshop sessions, as well as proceedings from the 2003 workshop. Together they provide an overview of the issues, and useful background for those organizations and individuals involved in further development of an international spent nuclear fuel storage facility in Russia.
The three National Security Laboratories--Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)--are managed by private-sector entities under contract to the National Nuclear Security Administration (NNSA). The FY2010 Defense Authorization Act mandated that NNSA task the National Research Council (NRC) to study the quality and management of Science and Engineering (S&E) at these Laboratories. This study (addressing a total of 5 tasks) is being conducted in two phases. This report covers the first phase, which addresses the relationship between the quality of the science and engineering at the Laboratory and the contract for managing and operating the Laboratory (task 4), and also addresses the management of work conducted by the Laboratory for entities other than the Department of Energy (task 5). The study's second phase will evaluate the actual quality of S&E in key subject areas. Managing for High-Quality Science and Engineering at the NNSA National Security Laboratories presents assessments of the evolution of the mission of the NNSA Labs and the management and performance of research in support of the missions, and the relationship between the Laboratory Directed Research and Development (LDRD) program and the ability of the Labs to fulfill their mission. The report examines the framework for managing science and engineering research at the Labs and provides an analysis of the relationships among the several players in the management of the Labs--the NNSA, the site offices, the contractors, and the Lab managers--and the effect of that relationship on the Laboratories' ability to carry out science and engineering research.
As part of a long-standing collaboration on nuclear nonproliferation, the National Academy of Sciences and the Russian Academy of Sciences held a joint workshop in Moscow in 2003 on the scientific aspects of an international radioactive disposal site in Russia. The passage of Russian laws permitting the importation and storage of high-level radioactive material (primarily spent nuclear fuel from reactors) has engendered interest from a number of foreign governments, including the U.S., in exploring the possibility of transferring material to Russia on a temporary or permanent basis. The workshop focused on the environmental aspects of the general location and characteristics of a possible storage site, transportation to and within the site, containers for transportation and storage, inventory and accountability, audits and inspections, and handling technologies.
The Committee on Electrometallurgical Techniques for DOE Spent Fuel Treatment was formed in September 1994 in response to a request made to the National Research Council (NRC) by the U.S. Department of Energy DOE. DOE requested an evaluation of electrometallurgical processing technology proposed by Argonne National Laboratory (ANL) for the treatment of DOE spent nuclear fuel. Electrometallurgical treatment of spent reactor fuel involves a set of operations designed to remove the remaining uranium metal and to incorporate the radioactive nuclides into well defined and reproducible waste streams. Over the course of the committee's operating life, this charge has remained constant. Within the framework of this overall charge, the scope of the committee's workâ€"as defined by its statement of taskâ€"has evolved in response to further requests from DOE, as well as technical accomplishments and regulatory and legal considerations. As part of its task, the committee has provided periodic assessments of ANL's R&D program on the electrometallurgical technology. Electrometallurgical Techniques for DOE Spent Fuel Treatment assesses the viability of electrometallurgical technology for treating DOE spent nuclear fuel and monitors the scientific and technical progress of the ANL program on electrometallurgical technology, specifically within the context of ANL's demonstration project on electrometallurgical treatment of EBR-II SNF. This report evaluates ANL's performance relative to the success criteria for the demonstration project, which have served as the basis for judging the efficacy of using electrometallurgical technology for the treatment of EBR-II spent nuclear fuel. It also addresses post-demonstration activities related to ANL's electrometallurgical demonstration project, and makes related recommendations in this area.
The U.S. Army is pilot testing chemical hydrolysis as a method for destroying the chemical agents stockpiled at Aberdeen, Maryland (HD mustard agent), and Newport, Indiana (VX nerve agent). The chemical agents at both locations, which are stored only in bulk ton containers, will be hydrolyzed (using aqueous sodium hydroxide for VX and water for HD) at slightly below the boiling temperature of the solution. The resulting hydrolysate at Aberdeen, which will contain thiodiglycol as the primary reaction product, will be treated by activated sludge biodegradation in sequencing batch reactors to oxidize organic constituents prior to discharge to an on-site federally owned wastewater treatment facility. The hydrolysate at Newport, which will contain a thiol amine and methyl phosphonic acid as the major reaction products, is not readily amenable to treatment by biodegradation. Therefore, organic constituents will be treated using supercritical water oxidation (SCWO). Integrated Design of Alternative Technologies for Bulk-Only Chemical Agent Disposal Facilities focuses on the overarching issues in the process designs integrating individual processing steps, including potential alternative configurations and process safety and reliability. This report reviews the acquisition design packages (ADPs) for the ABCDF and NECDF prepared by Stone and Webster Engineering Company for the U.S. Army.
The three National Nuclear Security Administration (NNSA) national security laboratories--Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL)--are a major component of the U.S. government's laboratory complex and of the national science and technology base. These laboratories are large, diverse, highly respected institutions with broad programs in basic sciences, applied sciences, technology development, and engineering; and they are home to world-class staff and facilities. Under a recent interagency agreement between the Department of Energy (DOE), Department of Defense, Department of Homeland Security, and the intelligence community, they are evolving to serve the needs of the broad national security community. Despite this broadening of substance and support, these laboratories remain the unique locus of science and engineering (S&E) for the U.S. nuclear weapons program, including, most significantly, the science-based stockpile stewardship program and the S&E basis for analyzing and understanding nuclear weapon developments of other nations and non-state actors. The National Research Council (NRC) was asked by Congress to assess the quality of S&E and the management of S&E at these three laboratories. The Quality of Science and Engineering at the NNSA National Security Laboratories is the second of two reports produced as part of this study. This report assesses the quality of S&E in terms of the capability of the laboratories to perform the necessary tasks to execute the laboratories' missions, both at present and in the future. The report identifies the following as four basic pillars of stockpile stewardship and non-proliferation analysis: (1) the weapons design; (2) systems engineering and understanding of the effects of aging on system performance; (3) weapons science base; and (4) modeling and simulation, which provides a capability to integrate theory, experimental data, and system design. The Quality of Science and Engineering at the NNSA National Security Laboratories offers a snapshot of the present with an eye to the future. This report discusses the current state of S&E and makes recommendations to maintain robust programs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.