The science of biology celebrates the discovery and understanding of biological systems that already exist in nature. In parallel, the engineering of biology must learn how to make use of our understanding of the natural world to design and build new useful biological systems. ""Synthetic biology"" represents one example of recent work to engineer biological systems. This emerging field aims to replace the ad hoc process of assembling biological systems by primarily developing tools to assemble reliable-but-complex living organisms from standard components that can later be reused in new combination. The focus of this book is ""genome refactoring,"" one of several approaches to manage the complexity of a biological system in which the goal is to redesign the genetic elements that encode a living form--preserving the function of that form but encoding it with a genome far easier to study and extend. This book presents genome refactoring in two ways: as an important aspect of the emerging field of synthetic biology and as a powerful teaching tool to train would be professionals in the subject. Chapters focus on the overarching goals of synthetic biology and their alignment with the motivations and achievements in genome engineering; the engineering frameworks of refactoring, including genome synthesis, standardization of biological parts, and abstraction; a detailed description of the bacteriophages that have been refactored up to this point; and the methods of refactoring and contexts for that work drawn from the bacteriophage M13. Overall, these examples offer readers the potential for synthetic biology and the areas in need of further research. If successful, synthetic biology and genome refactoring could address any number of persistent societal needs, including sustainable energy, affordable and effective medicine, and green manufacturing practices. Table of Contents: Tools for Genome Engineering and Synthetic Biology / Bacteriophage as Templates for Refactoring / Methods/Teaching Protocols for M13 Reengineering / Writing and Speaking as Biological Engineers / Summary and Future Directions / Appendix A / Appendix B / Appendix C
Today’s synthetic biologists are in the early stages of engineering living cells to help treat diseases, sense toxic compounds in the environment, and produce valuable drugs. With this manual, you can be part of it. Based on the BioBuilder curriculum, this valuable book provides open-access, modular, hands-on lessons in synthetic biology for secondary and post-secondary classrooms and laboratories. It also serves as an introduction to the field for science and engineering enthusiasts. Developed at MIT in collaboration with award-winning high school teachers, BioBuilder teaches the foundational ideas of the emerging synthetic biology field, as well as key aspects of biological engineering that researchers are exploring in labs throughout the world. These lessons will empower teachers and students to explore and be part of solving persistent real-world challenges. Learn the fundamentals of biodesign and DNA engineering Explore important ethical issues raised by examples of synthetic biology Investigate the BioBuilder labs that probe the design-build-test cycle Test synthetic living systems designed and built by engineers Measure several variants of an enzyme-generating genetic circuit Model "bacterial photography" that changes a strain’s light sensitivity Build living systems to produce purple or green pigment Optimize baker’s yeast to produce ?-carotene
Today’s synthetic biologists are in the early stages of engineering living cells to help treat diseases, sense toxic compounds in the environment, and produce valuable drugs. With this manual, you can be part of it. Based on the BioBuilder curriculum, this valuable book provides open-access, modular, hands-on lessons in synthetic biology for secondary and post-secondary classrooms and laboratories. It also serves as an introduction to the field for science and engineering enthusiasts. Developed at MIT in collaboration with award-winning high school teachers, BioBuilder teaches the foundational ideas of the emerging synthetic biology field, as well as key aspects of biological engineering that researchers are exploring in labs throughout the world. These lessons will empower teachers and students to explore and be part of solving persistent real-world challenges. Learn the fundamentals of biodesign and DNA engineering Explore important ethical issues raised by examples of synthetic biology Investigate the BioBuilder labs that probe the design-build-test cycle Test synthetic living systems designed and built by engineers Measure several variants of an enzyme-generating genetic circuit Model "bacterial photography" that changes a strain’s light sensitivity Build living systems to produce purple or green pigment Optimize baker’s yeast to produce ?-carotene
Today's synthetic biologists are in the early stages of engineering living cells to help treat diseases, sense toxic compounds in the environment, and produce valuable drugs. With this manual, you can be part of it. Based on the BioBuilder curriculum, this valuable book provides open-access, modular, hands-on lessons in synthetic biology for secondary and post-secondary classrooms and laboratories. It also serves as an introduction to the field for science and engineering enthusiasts. Developed at MIT in collaboration with award-winning high school teachers, BioBuilder teaches the foundational ideas of the emerging synthetic biology field, as well as key aspects of biological engineering that researchers are exploring in labs throughout the world. These lessons will empower teachers and students to explore and be part of solving persistent real-world challenges.
The science of biology celebrates the discovery and understanding of biological systems that already exist in nature. In parallel, the engineering of biology must learn how to make use of our understanding of the natural world to design and build new useful biological systems. "Synthetic biology" represents one example of recent work to engineer biological systems. This emerging field aims to replace the ad hoc process of assembling biological systems by primarily developing tools to assemble reliable-but-complex living organisms from standard components that can later be reused in new combination. The focus of this book is "genome refactoring," one of several approaches to manage the complexity of a biological system in which the goal is to redesign the genetic elements that encode a living form--preserving the function of that form but encoding it with a genome far easier to study and extend. This book presents genome refactoring in two ways: as an important aspect of the emerging field of synthetic biology and as a powerful teaching tool to train would be professionals in the subject. Chapters focus on the overarching goals of synthetic biology and their alignment with the motivations and achievements in genome engineering; the engineering frameworks of refactoring, including genome synthesis, standardization of biological parts, and abstraction; a detailed description of the bacteriophages that have been refactored up to this point; and the methods of refactoring and contexts for that work drawn from the bacteriophage M13. Overall, these examples offer readers the potential for synthetic biology and the areas in need of further research. If successful, synthetic biology and genome refactoring could address any number of persistent societal needs, including sustainable energy, affordable and effective medicine, and green manufacturing practices. Table of Contents: Tools for Genome Engineering and Synthetic Biology / Bacteriophage as Templates for Refactoring / Methods/Teaching Protocols for M13 Reengineering / Writing and Speaking as Biological Engineers / Summary and Future Directions / Appendix A / Appendix B / Appendix C
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.